Overcomplete Image Representations for Texture Analysis

Rodrigo Nava

Abstract

In recent years, computer vision has played an important role in many scientific and technological areas mainlybecause modern society highlights vision over other senses. At the same time, application requirements and complexity have also increased so that in many cases the optimal solution depends on the intrinsic charac-teristics of the problem; therefore, it is difficult to propose a universal image model. In parallel, advances in understanding the human visual system have allowed to propose sophisticated models that incorporate simple phenomena which occur in early stages of the visual system. This dissertation aims to investigate characteristicsof vision such as over-representation and orientation of receptive fields in order to propose bio-inspired image models for texture analysis

Keywords

Gabor filters, Local Binary patterns, bio-inspired models
Copyright (c)