Facial Emotional Classifier For Natural Interaction

Isabelle Hupont, Eva Cerezo, Sandra Baldassarri

Abstract

The recognition of emotional information is a key step toward giving computers the ability to interact more naturally and intelligently with people. We present a simple and computationally feasible method to perform automatic emotional classification of facial expressions. We propose the use of a set of characteristic facial points (that are part of the MPEG4 feature points) to extract relevant emotional information (basically five distances, presence of wrinkles in the eyebrow and mouth shape). The method defines and detects the six basic emotions (plus the neutral one) in terms of this information and has been fine-tuned with a database of more than 1500 images. The system has been integrated in a 3D engine for managing virtual characters, allowing the exploration of new forms of natural interaction.

Keywords

Face and gesture recognition; emotional classifier; multimodal interfaces

Full Text:

PDF (360Kb)
Copyright (c)