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Abstract

Articulated models are commonly used for recognition tasks in robotics and in gait analysis, but can
also be extremely useful to develop analytical methods targeting spinal deformities studies. The three-
dimensional analysis of these deformities is critical since they are complex and not restricted to a given
plane. Thus, they cannot be assessed as a two-dimensional phenomenon. However, analyzing large databases
of 3D spine models is a difficult and time-consuming task. In this context, a method that automatically ex-
tracts the most important deformation modes from sets of articulated spine models is proposed.

The spine was modeled with two levels of details. In the first level, the global shape of the spine was
expressed using a set of rigid transformations that superpose local coordinates systems of neighboring ver-
tebrae. In the second level, anatomical landmarks measured with respect to a vertebra’s local coordinate
system were used to quantify vertebra shape. These articulated spine models do not naturally belong to a
vector space because of the vertebral rotations. The Fréchet mean, which is a generalization of the con-
ventional mean to Riemannian manifolds, was thus used to compute the mean spine shape. Moreover, a
generalized covariance computed in the tangent space of the Fréchet mean was used to construct a statistical
shape model of the scoliotic spine. The principal deformation modes were then extracted by performing a
principal component analysis (PCA) on the generalized covariance matrix.

The principal deformations modes were computed for a large database of untreated scoliotic patients.
The obtained results indicate that combining rotation, translation and local vertebra shape into a unified
framework leads to an effective and meaningful analysis method for articulated anatomical structures. The
computed deformation modes also revealed clinically relevant information. For instance, the first mode of
deformation is associated with patients’ growth, the second is a double thoraco-lumbar curve and the third
is a thoracic curve. Other experiments were performed on patients classified by orthopedists with respect to
a widely used two-dimensional surgical planning system (the Lenke classification) and patterns relevant to
the definition of a new three-dimensional classification were identified. Finally, relationships between local
vertebrae shapes and global spine shape (such as vertebra wedging) were demonstrated using a sample of
3D spine reconstructions with 14 anatomical landmarks per vertebra.
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1 Introduction

Articulated models are collections of objects linked together so that the relative motion of any two parts is rigid
(combination of a 3D rotation and a translation). This family of models can be used to describe a wide variety
of objects. A popular application is human gait analysis from video sequences. In this type of application,
human body motion is characterized by articulations states and about thirty degrees of freedom are usually
necessary to obtain convincing results. This number of degrees of freedom (DOF) makes model estimation
from video sequences challenging from a computational perspective. However, probabilistic methods can be
used to discard unlikely positions and to deal with occlusions [7, 14, 28, 33].

The human body being composed of 206 bones, it is easily understandable that those models are highly
simplified representations of the human skeleton. Only articulations critical to gait description are considered
and only these articulations’ most important DOF are included in the models. Thus, subtle pathological motions
could be inadvertently discarded. For example, most articulated models used for motion capture only attribute
one degree of freedom to the knee, whereas many musculoskeletal problems of the knee are characterized by
more complex 3D rotations.

This situation contrasts with statistical shapes models currently used to process radiological spine images.
Those statistical models are based on point-to-point correspondences [20, 3] and many points are sampled
on each vertebra, therefore the number of DOF could reach several hundreds. These statistical shape models
describe efficiently the local shape of the vertebrae and they can improve the performances of segmentation and
registration algorithms. However, they fail to take into account that the spine is a collection of vertebrae linked
together by soft tissues (discs, muscles, ligaments, efc.). Capturing the articulated nature of the spine will lead
to a statistical shape model that can be interpreted more intuitively and that will uncover more clinically relevant
relationships.

Point-to-point correspondences are therefore not the best choice of primitives. A more natural choice would
be to use frames (points associated with three orthogonal axes) to deal with articulated anatomical structures.
The main reason for this choice is that frames enable a more natural analysis of the relative orientations and
positions of the models, whereas point primitives would only properly deal with positions. In this context,
articulated models of the spine will be created by associating a frame to each vertebra. The deformations of the
spine shape will then be described in terms of rigid transformations applied to those frames.

A variability model of inter-vertebral rigid transformations based on Lie group properties was recently pro-
posed [5]. However, the inter-vertebral transformations were analyzed individually thus discarding the coupling
between different vertebral levels. It is difficult to take into account the coupling between all vertebral levels
because of the high dimensionality of the model. In fact, there are 5 lumbar and 12 thoracic vertebrae (ex-
cluding cervical vertebrae) and a rigid transformation has 6 DOF, which means that an articulated description
of the spine shape is characterized by at least 102 DOF. A clinician can hardly perform the analysis of such
large variability model. It is therefore necessary to find a way to extract only the most meaningful modes of
variability. These modes will indicate what varies the most from a geometric perspective in a given group, thus
helping the physician in the task of analyzing large sets of 3D spine models, which is a necessary but tedious
task to define a clinically relevant 3D classification.

In this context, the main contributions of this paper are to propose a method based on Riemannian geometry
to perform principal components analysis on articulated spine models and to apply that method to a large
database of scoliotic patients in order to construct the first statistical atlas of 3D deformation patterns for
adolescent idiopathic scoliosis (a pathology that causes spine deformations). The combination of point-based
and frame-based model will also be demonstrated to analyze the relation between the shape of the spine and
the shape of individual vertebrae.

The remaining of the manuscript is divided in four sections. The next section review relevant works per-
formed about scoliosis deformities analysis and about dimensionality reduction applied to articulated models.
Section 3 then presents the proposed methods and the acquisition materials used for this study. The results
obtained on large databases of scoliotic patients are presented in Section 4. Finally, Section 5 summarizes the



J. Boisvert et al. / Electronic Letters on Computer Vision and Image Analysis 7(4):13-31, 2008

conclusions and new perspectives that resulted from this study.

2 Background

2.1 3D Spine Models Classifications

Analyzing large databases of 3D spine models is becoming more and more important because there is a con-
sensus among orthopedic surgeons that spinal deformations such as adolescent idiopathic scoliosis (AIS) are
three-dimensional. However, there is no consensus yet regarding how to use 3D information to improve pa-
tients’ care.

Classification is a decisive part of AIS patient assessment because it is used in the preoperative planning of
corrective surgeries. King first proposed a classification of frontal thoracic curves, which was used to guide
surgeries performed with the Harrington instrumentation [16]. This classification did not address sagittal defor-
mations neither lumbar curves. Moreover, its reliability was contested [17, 31]. Lenke later proposed another
classification [18] that includes lumbar and sagittal modifiers. Lenke classification is more complete; how-
ever combining 2D measures is different from performing a real 3D analysis. Thus, new three-dimensional
classifications of the spinal deformations associated with AIS are being investigated.

However, taking into account the three-dimensional nature of the deformations is far from being trivial. Many
classifications were recently introduced. Duong et al. [8] used a wavelet transform of the vertebrae centroids
and a clustering method to agglomerate similar 3D spine shapes. The method is technically elegant but its
complexity might not be compatible with clinical practice. Poncet et al. [27] proposed a classification that is
based solely on spine torsion. Spine torsion is certainly an important factor to take into account but Duong et
al. demonstrated that it is not the only one. Finally, Negrini et al. [23, 22, 21] recently proposed a classification
based on “quasi-3D” indices (measure performed on multiple 2D projections). The main drawbacks of their
approach are the ad hoc character of the indices selected and the two-dimensional nature of the classification.

In summary, analyzing large databases of 3D spine models is an important task but it is also a difficult and
time-consuming one. Automatically extracting the most important deformation modes from a set of articulated
spine models would greatly help surgeons to reliably and efficiently explore 3D spine models databases, which
is a necessary prerequisite to the definition of a clinically relevant 3D classification of scoliotic deformities.

2.2 Principal components analysis of the 3D articulated spine models

Dimensionality reduction applied to the spine or to articulated models is not a new idea and methods were
proposed in the past. As a part of a method that aim to predict the geometry of the spine based on the geometry
of the trunk, Bergeron et al. [4] performed a principal component analysis on the 3D coordinates of vertebrae
centers in the frequency domain. The most important limitation of this approach is that vertebrae orientations
are not modeled. Moreover, performing the analysis in the frequency domain does not allow a physically
grounded intuitive interpretation of the results. Benameur et al. [3] and Fleute et al. [10] both proposed
principal components analysis (PCA) based spine registration method but only the shapes of the vertebrae were
considered not the global spine shape.

Principal components analysis was also used to process articulated body models. Yacoob and Black [32]
applied PCA analysis on motion parameters measured with respect to the image plane in the context of activity
recognition. Unfortunately, since the measurements are not intrinsic to the geometry of the articulated object the
same viewpoint and camera have to be used, which is unrealistic for clinical studies that involves multiple re-
search centers. Gonzalez et al. [12] and Green et al. [13] both performed a PCA analysis on aligned time-series
of articulated models descriptions in order to recognize human actions. Jiang and Motai [15] proposed a sim-
ilar approach for on-line robot learning. Finally, Al-Zubi and Sommer [1] performed PCA to learn articulated
motions of human arms. These approaches used representations that were either only based on 3D coordinates
or only based on an angular description of the articulated body. However, using both positions and orientations
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Figure 1: Anatomical landmarks used to digitize the spine geometry and to analyze local vertebra shape. Top:
lateral view. Bottom: posterior view.

would allow a better separation of different physiological phenomena such as pathological deformations and
normal growth (that is expected to be dominated by translation). Moreover, these methods compute the mean
without taking into account that 3D rotations form a curved manifold. Therefore, the obtained results depend
on the arbitrary configuration of the local coordinates systems used to perform angular measurements.

3 Material and Methods

This section is divided in three subsections. One of the problems with previous attempts to find variability
modes from 3D spine models was that their underlying spine geometry representations were based on point-
to-point correspondences, which are not adapted to an analysis of orientations. The first subsection (3.1) will
thus present an articulated description of the human spine that includes both vertebrae’s relative position and
orientation as well as the method used to estimate these articulated spine models from radiographs.

The chosen articulated description uses rigid transformations to encode the relative position and orientation
of the vertebrae. However, rigid transformations naturally belong to a Lie group and conventional statistical
methods usually apply only in vector spaces. To alleviate this problem, the second subsection (3.2) will present
how to rigorously generalize concepts such as the mean and the covariance to articulated spine models.

Finally, the last subsection (3.3) will introduce a simple mechanism to extract and visualize the most signif-
icant deformations modes observed in a database of articulated spine models.

3.1 Articulated Spine Models from Radiographs

Articulated models could be estimated from a wide variety of image modalities. Computed tomography or
magnetic resonance could be used since the images recorded using those modalities are three-dimensional.
However, large portions of the spine deformations are lost when patients are asked to lie down. Moreover,
adolescent idiopathic scoliosis patients often present postural problems, which are relevant to the analysis. In
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Figure 2: Frames and transformations used to express the spine as an articulated model.

light of those constraints, we choose to use multi-planar radiography in order to digitize the 3D anatomy of the
patients’ spine.

Multi-planar radiography is a simple technique where two (or more) calibrated radiographs of a patient are
taken to compute the 3D position of anatomical landmarks using a triangulation algorithm. It is one of the few
imaging modalities that can be used to infer the three-dimensional anatomy of the spine when the patient is
standing up. Furthermore, bi-planar radiography of scoliotic patients is routinely performed at Sainte-Justine
hospital (Montreal, Canada).

The anatomical landmarks used in this study are illustrated in Figure 1. The identification of all anatomical
landmarks is time consuming and costly because it is performed by a qualified technician. However, it provides
a more robust anatomical matching of landmarks, which ensures a more precise 3D reconstruction. Thus, only
the anatomical landmarks 1 to 6 were used when only the shape of the spine and not the local shapes of the
vertebrae was analyzed. These anatomical landmarks were identified on each vertebra from T1 (first thoracic
vertebra) to L5 (last lumbar vertebra) on a posterior-anterior and a lateral radiograph. The 3D coordinates of the
landmarks were then computed and the deformation of a high-resolution template using dual kriging yielded a
total of 24 reconstructed landmarks. The accuracy of this method was previously established to 2.6 mm [2].

Once the anatomical landmarks presented in Figure 1 are reconstructed in 3D, they are expressed in the local
coordinates system of their respective vertebra (see Stokes [29] for a formal definition of the local coordinates
system of a vertebrae). These local landmarks coordinates py, p2, . . . , pn, (Where n is the number of anatomical
landmarks used for each vertebra) will be used to analyze the vertebrae shapes. Each vertebra is then rigidly
registered to its first upper neighbor and the resulting rigid transformations are recorded. By doing so, the
spine is represented by a set of rigid transformations (see the Figure 2). These inter-vertebral transformations
11,15, ...,T17 will be used to analyze the spine shape.

The combination of the local landmarks coordinates and the inter-vertebral transformations is especially well
adapted to an analysis of the spinal deformities since the inter-vertebral rigid transformations describe the state
of the physical links that alter the shape of the whole spine while the local landmarks coordinates can quantify
the local vertebral deformations.

Most scoliotic patients are adolescents or pre-adolescents and the spine length of these patients varies consid-
erably. At this point one might be tempted to normalize the spine models to improve comparability. However,
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Figure 3: Graphical representation of the Logy and Expy maps on a three-dimensional sphere.

the development of many musculoskeletal pathologies, such as adolescent idiopathic scoliosis, is tightly linked
with the patient growth process. Thus, normalization could discard valuable information and should be avoided
in most applications.

3.2 Elements of Articulated Models Statistics

The articulated spine models presented in the last subsection express the spine shape using a vector of inter-
vertebral rigid transformations. This idea is very intuitive and models closely the pathological progression
mechanisms of spinal deformities. However, rigid transformations do not naturally belong to a vector space
(they belong to a curved Riemannian manifold) and simple operations necessary to conventional multi-variate
analysis such as addition and scalar multiplication are not defined on those. A generalization of concepts as
simple as the mean and the covariance is therefore needed.

One could be tempted to parameterize the rigid transformations using one of the many available representa-
tions (Euler angles and translation vector, for example) and then to compute the mean and covariance on that
representation. However, the result would not be intrinsic. In other words, the mean and covariance would be
dependent on the viewpoint from which the orientation and position would have been measured.

The distance is a general concept that can be used to perform those generalizations and Riemannian geometry
offers a mathematical framework to work with primitives when only a distance is available. Concepts of
probability and statistics applied to Riemannian manifolds were recently studied [26]. Moreover, a Riemannian
framework was also used in the context of statistical shape modeling to perform PGA (principal geodesic
analysis) on medial axis representations [9].

3.2.1 Exponential and Logarithmic Maps

In a complete Riemannian manifold M the shortest smooth curve «(t) such that v(0) = x and (1) = y (with
xz,y € M) is called a geodesic and the length of that curve is the distance between x and y. Two important
maps can be defined from the geodesics: the exponential map Exp,, which maps a vector J,, of the tangent plane
T, M to the element reached in a unit time by the geodesic that starts at  with an initial tangent vector J,, and
the logarithmic map Log, which is the inverse function of Exp,. In other words, these two maps enable us to
“unfold” the manifold on the tangent plane (which is a vector space) and to project an element of the tangent
plane to the manifold (see Figure 3 for an example of Log, and Exp,,).

In this paper, the spine shape is modeled as a set of frames associated to local coordinates systems of ver-
tebrae. The modifications of the spine geometry are then modeled as rigid transformations applied to those
frames. In order to compute the principal deformations modes (from equation 7), the exponential and logarith-
mic maps associated with a distance function on rigid transformations are thus needed.

A rigid transformation is the combination of a rotation and a translation. Defining a suitable distance on the
translational part is not difficult since 3D translations belong to a real vector space. However, the choice of a
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Figure 4: Rigid transformation expressed by an axis of rotation 7, an angle of rotation ¢ and a translation vector
t

distance function between rotations is more complex. Rotations are usually expressed using a three by three
matrix that belongs to the special orthogonal group SO3 and simple solutions, like the norm of the difference,
does not respect the prerequisites conditions for distance functions.

To define a suitable distance between rigid transformations, another representation of the rotations called the
rotation vector is needed. This representation is based on the fact that a 3D rotation can be fully described by
an axis of rotation supported by a unit vector n and an angle of rotation 6 (see figure 4). The rotation vector r
is then defined as the product of n and 6.

The conversion from the rotation vector to the rotation matrix is performed using the Rodrigues rotation
equation (see [11] for details):

0 —ny Ny
R =1 +sin(0)S(n) + (1 —cos(0))S(n)* with S(n)= | n. 0 —ny
—Ny  Ng 0

And the inverse map (from a rotation matrix to a rotation vector) is given by the following equations:

Tr(R) — _ R—RT

~ 2sin(f)
Using the rotation vector representation, a left-invariant distance (d(73 o Ty, T3 o To) = d(T1,T3)) between
two rigid transformations can easily be defined:

Ly and S() (1)

0 = arccos(

d(Ty, Ty) = N (Ty L o Ty)  with N (T)? = N,({r, t})? = ||wr|? + ||t|? (2)

Where w is used to weight the relative effect of rotation and translation, r is the rotation vector and ¢ the trans-
lation vector. Because the selected distance function is left-invariant, we have Exp,, () = 1o Exp4(D( ) lx)
and Log,,(T') = D(u)Log4(p~toT) with D(x) = a%:c 0y|y—rq. Furthermore, it can be demonstrated that the
exponential and log map associated with the distance of equation 2 are the mappings (up to a scale) between
the combination of the translation vector and rotation vector and the combination of the rotation matrix and the
translation vector [25].

wr(R)

R(r
Expr(0) =| 1) and Logyy(7) =| ¢

The Riemannian structure of the anatomical landmarks used to quantify the local shape of the vertebrae is
much more simple. In fact, anatomical landmarks simply belong to R2, which is a vector space. Thus, with
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respect to the Euclidian distance, the anatomical landmarks belong to a flat Riemannian manifold. The Exp and
Log maps are then as simple as translations of the original landmarks:

Exp,(q) =p+q and Log,(r)=r—p with p,qr€ R

3.2.2 Fréchet Mean

For a given distance, the generalization of the usual mean can be obtained by defining the mean as the element
1 of a manifold M that minimizes the sum of the distances with a set of elements x(__n of the same manifold

M:

N
W= arg minz d(x, ;)
zeM T

This generalization of the mean is called the Fréchet mean. Since it is defined using a minimization, it
is difficult to compute it directly from the definition. However, it can be computed using a gradient descent
performed on the summation. The following iterative equation summarizes this operation:

N
1
pmi1 = Exp,, (> Log,, (1) 3)
=0

3.2.3 Generalized Covariance

The variance (as it is usually defined on real vector spaces) is the expectation of the Ly norm of the difference
between the mean and the measures. An intuitive generalization of the variance on Riemannian manifolds is
thus given by the expectation of a squared distance:

N
1
# =y @

To create statistical shape models it is necessary to have a directional dispersion measure since the anatomical
variability of the spine is anisotropic [5]. The covariance is usually defined as the expectation of the matricial
product of the vectors from the mean to the elements on which the covariance is computed. Thus, a similar
definition for Riemannian manifolds would be to compute the expectation in the tangent plane of the mean
using the log map:

N
1
Y= N ;Logu(x)Log#(x)T (5)

3.2.4 Multivariate Case

The Fréchet mean and the generalized covariance make it possible to study the centrality and dispersion of one
primitive belonging to a Riemannian manifold. However, to build complete statistical shape models, it would
be most desirable to study multiple primitives altogether. Therefore, a generalized cross-covariance X, is
needed.

N
|
Vrg = D_Log,, (fi)log,, (9:)"
=0
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A natural extension is to create a multivariate vector f = [f1, f2, f3,..., fx]] where each element corre-
sponds to a part of a model made of several primitives. In our case, these primitives are the inter-vertebral rigid
transformations and the local anatomical landmarks described in Figure 1. The mean and the covariance of this
multivariate vector will thus be:

M1 Ef1fl EflfQ Eflfk
12 PN by DY

u= " and % — f.2f1 f'2f2 f'ka 6)
[k Shfi Yfafe oo Sff

This is very similar to the conventional multivariate mean and covariance except that the Fréchet mean and
the generalized cross-covariance are used in the computations.

3.3 Principal Deformations

The equation 6 allows us to compute a statistical shape model for a group of models made of several primitives.
However, the different primitives will most likely be correlated which makes the variability analysis very dif-
ficult. Furthermore, the dimensionality of the model is also a concern and we would like to select only a few
important uncorrelated components.

Unlike the manifold itself, the tangent plane is a vector space and its basis could be changed using a simple
linear transformation. Thus, we seek an orthonormal matrix A (AAT = 1) to linearly transform the tangent
plane ( Logu(g) = ALogN( f) ) such as the generalized covariance in the transformed tangent space is a
diagonal matrix (X, = diag (A1, A2, ..., A)). The covariance matrices of the transformed tangent space and
of the original tangent space are connected by the following equation:

Ygg = diag (A1, A2, ..., A\p) = AN AT

If A is rewritten as A = [ay, as, ..., ax]?, then it is easy to show that:

[A1a1, Aaaz, ..., Agag] = [Eprar, Xgpag, ..., Syrag] (7

The line vectors of the matrix A are therefore the eigenvectors of the original covariance matrix and the
elements of the covariance matrix in the transformed space are the eigenvalues of the original covariance. This
is the exact same procedure that is used to perform PCA in real vector spaces. Like for real vector spaces,
the variance is left unchanged since 02 = Tr(Xs) = Tr(Zy,) and the cumulative fraction of the variance
explained by the first n components is:

1
Pzﬁ Z i

i=1...n

A shape model can be re-created from coordinates of the transformed tangent space simply by going back to
the original tangent space and projecting the model on the manifold using the exponential map. So if «; is the
coordinate associated with the ¥ principal component, the following equation can be used to re-create a shape
model:

k
S = EXPM(Z Q;a;)

i=1
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4 Results and Discussion

This section presents and discusses the results obtained using the method previously described. Principal spine
deformations modes are presented in three different contexts. First of all, the principal spine deformation
modes of a group of patients afflicted by AIS is presented. These results indicated that the principal defor-
mation modes can efficiently extract the most important modes of variability and that those modes have a
strong clinical meaning. Then, a comparison of the principal deformations modes of two groups of scoliotic
patients classified according to the Lenke classification [18] is introduced. This experiment demonstrates that
the principal deformation modes can extract clinically relevant patterns that could easily be missed by a di-
rect visualization of the spine models. Finally, we present results obtained from a group of spine models with
14 landmarks by vertebra where we show that global deformations of the spine are correlated with vertebral
deformations.

4.1 Spine Shape Analysis

The method described in the previous sections was applied to a group of 307 scoliotic patients. The patients
selected for this study had not been treated with any kind of orthopedic treatment when the radiographs were
taken. Therefore, the inter-patients variability observed was mainly caused by anatomical differences and not
by any treatment. A total of 6 anatomical landmarks were identified manually by a qualified technician, this
number of landmarks is sufficient to analyze the shape of the spine, but is not enough to properly analyze
vertebrae shapes. Thus, only the inter-vertebral rigid transformations were used for this experiment.

The only additional parameter that needs to be selected is w, which balances the relative importance of the
translation and rotation (see Equation 2). In some applications, rotations are more important than translations
(or the converse) and this parameter may be used to bias the results toward the most important part of the rigid
transformations. In our case, however, we did not want to introduce such bias. Thus, w was selected so that the
rotations and the translations had the same contribution to the global variance. This criteria lead to a numerical
value of w = 20.

To illustrate the different deformation modes retrieved using the proposed method, four models were recon-
structed for each of the first five principal deformation modes. Those models were reconstructed by setting
ap 0 —3v/ Ak, —vAk, VA and 3v/A, for & = 1...5 while all others components (o;; with i # k) were
set to zero (see figures 5 and 6). In theory, a total of 102 principal deformation modes could be extracted.
However, 102 figures would certainly overload this paper. The first five modes (in term of variance explained)
illustrate well the power of the proposed method since they can be understood without an extensive medical
background. The interpretation of less important deformations modes is subtler. Furthermore, the 3D spine
models in our databases are corrupted by a certain amount of acquisition noise. Thus, principal deformations
modes associated with small variances are more likely to be dominated by noise.

A visual inspection revealed that the first five principal deformation modes have clinical meanings. The first
mode is associated with the patient growth because it is mainly characterized by an elongation of the spine and
also includes a mild thoracic curve. The second principal deformation mode could be described as a double
thoraco-lumbar curve, because there are two curves: one in the thoracic segment (upper spine) and another
in the lumbar segment (lower spine). The third principal mode of deformation is a simple thoracic curve (the
apex of the curve is in the thoracic spine), but it is longer than the thoracic curve observed in the first principal
component. It is also interesting to note that, in addition to the curves visible on the posterior-anterior view,
the second and third principal deformation modes are also associated with the development of a kyphosis (back
hump) on the lateral view. The fourth component is a lumbar lordosis (lateral curve of the lumbar spine).
Finally, the fifth component is related to the patient’s frontal balance.

Those curve patterns are routinely used in different clinical classifications of scoliosis (used to plan surg-
eries). For instance, the reconstructions built from the first principal deformation mode would be classified
using King’s classification [16] as a type II or III (depending on which reconstruction is evaluated), the second
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deformation mode would be associated to King’s type I or III and the third principal deformation could be
associated to King’s type IV.

Previously those patterns were derived from surgeons’ intuition using 2D images and clinical indices, whereas
it is now possible to automatically compute those patterns from statistics based only on 3D geometries.

Furthermore, the cumulative variance explained by an increasing number of principal deformations modes
(illustrated in Figure 7) shows the capacity of the proposed method to reduce the number of dimensions of
the model while keeping a large part of the original variance. This property could be used in registration
or reconstruction algorithms. Also, since about 50 % of the variance is explained by the first five principal
deformations modes, it appears that a careful analysis of more principal deformation modes by trained medical
experts might reveal more clinically pertinent knowledge in the future.

The variability observed from our dataset is predominantly associated with anatomical variability, but it
also includes variability caused by other factors such as patients’ postures and landmark reconstruction errors.
Therefore, the principal deformations modes associated with small eigenvalues are likely to be more closely
related to acquisition noise than to anatomical variations between individuals.

4.2 Surgical Classifications Analysis

Classifications of spinal deformities are used for several purposes : as a training tool for new residents, as mean
of communication between practitioners, as a guideline for the selection of a corrective treatment, efc. Current
classifications used for adolescent idiopathic scoliosis are based on 2D measures performed on radiographs.
However, the deformities are three-dimensional and therefore it is very likely that clinically relevant sub-groups
could be identified by a 3D analysis.

Two groups of untreated AIS patients with two different curve types (according to the Lenke classification
[18]) were identified from the Sainte-Justine Hospital’s archive: 86 patients with type I curves and 47 patients
with type V curves. Type I curves are characterized by a main thoracic curve while type V curves are thora-
columbar or lumbar curves. A qualified physician performed the classification and six anatomical landmarks
were identified on each radiograph. Only the inter-vertebral rigid transformations were used to compute the
principal deformation modes (not the anatomical landmarks). The first three principal modes of deformations
(with w = 20) computed from the two groups of patients are presented in Figure 8 and Figure 9.

Figure 8 shows that the most important mode of deformation for scoliotic spines of type I is an elongation of
the spine combined with the development of a right thoracic curve and little curvature modification visible from
the lateral view. Type I curves are defined as main thoracic curvatures and right curves are more prevalent then
the left among scoliotic patients. Moreover, smaller patients are usually younger and scoliosis progress during
growth. Thus, this deformation mode is compatible with the progression of the disease for patient that suffers
from a curve of the first type. The second mode of deformation is associated with a double curve and strong
sagittal curvature of the lower spine (lordosis) caused largely by a rotation of L5 (the lowest lumbar vertebra).
This L5 rotation could indicate a deformation of a structure below the spine, thus it would be very interesting
to also analyze the position and orientation of the pelvis. Finally, the third mode exhibit the development of a
right thoracic curve, but a curve with a lower apex (close to T9-T10) than the right thoracic curve present in the
first deformation mode.

The deformations modes presented in Figure 9 were computed in the database of scoliotic models with
curves of the fifth type. The first mode of deformation in this case is characterized by an elongation of the
spine associated with the creation of a left thoracolumbar curve. Lenke defined curves of the fifth type as
thoracolumbar or lumbar curves. This first deformation mode is therefore similar to the first deformation mode
of type 1 curves as they both depict the worsening of the 2D curve they were aimed to represent and are
combined with an elongation of the spine. The second mode of deformation is thoracolumbar curve going from
left to right with an increasing kyphosis. Finally, the third mode is the transformation of a double curve with
very little lordosis and kyphosis to a small thoracolumbar curve with large lordosis and kyphosis.

These two figures indicate that the principal deformations modes can efficiently capture the clinically in-
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Figure 5: First, second and third principal deformation modes of an AIS patient database. Posterior-anterior
view (a) and lateral view (b) of the first principal deformation mode. Posterior-anterior view (c) and lateral
view (d) of the second principal deformation mode. Posterior-anterior view (e) and lateral view (f) of the third
principal deformation mode. Spine models were rendered for —3, —1, 1 and 3 times the standard deviation
explained by the corresponding deformation mode.



J. Boisvert et al. / Electronic Letters on Computer Vision and Image Analysis 7(4):13-31, 2008 25

(@)

Figure 6: Fourth and fifth principal deformation modes of an AIS patient database. Posterior-anterior view (a)
and lateral view (b) of the fourth principal deformation mode. Posterior-anterior view (c) and lateral view (d)
of the fifth principal deformation mode. Spine models were rendered for —3, —1, 1 and 3 times the standard
deviation explained by the corresponding deformation mode.
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Figure 7: Fraction of the variance explained by the principal deformation modes
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Figure 8: First, second and third principal deformation modes of AIS patient with type I curves. Posterior-
anterior view (a) and lateral view (b) of the first principal deformation mode. Posterior-anterior view (c) and
lateral view (d) of the second principal deformation mode. Posterior-anterior view (e) and lateral view (f) of
the third principal deformation mode. Spine models were rendered for —3, —1, 1 and 3 times the standard
deviation explained by the corresponding deformation mode.
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Figure 9: First, second and third principal deformation modes of AIS patient with type V curves. Posterior-
anterior view (a) and lateral view (b) of the first principal deformation mode. Posterior-anterior view (c) and
lateral view (d) of the second principal deformation mode. Posterior-anterior view (e) and lateral view (f) of
the third principal deformation mode. Spine models were rendered for —3, —1, 1 and 3 times the standard
deviation explained by the corresponding deformation mode.
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Figure 10: Asymmetrical deformation of a vertebral body located near the apex of a spinal curve (a phenomena
also called vertebra wedging) observe in the third principal deformation modes of a group of scoliotic patients
which had 14 anatomical landmarks reconstructed on each of their vertebrae. Model reconstructions (with a

fixed camera) for —3v/ A3 (a), —v/A3 (b), v/ A3 (c) and 3/ A3 (d)

tended deformation mode in a given category of a surgical classification system (main thoracic for curves of
the first type and thoracolumbar/lumbar for curves of the fifth type). It is also interesting to note that other
important 3D curve patterns could also be identified. Those minor patterns would most probably be missed
by a direct examination of the 3D spine models, which demonstrates the usefulness of the method to analyze
rapidly and efficiently large databases of articulated models.

4.3 Combined Spine Shape and Local Vertebrae Shape Analysis

Surgical classifications of the spine are more concerned with the shape of the whole spine and less with the
shape of individual vertebrae. This small interest is due to the fact that little can be done to correct vertebral de-
formations, especially if the patient’s growth is over. However, there are several applications where a combined
analysis of both spine and vertebrae shapes is very important.

First of all, image-guided spine surgeries are based on efficient and reliable registration methods. Those
methods optimize a similarity measure between a spine model and spine images by deforming the spine model.
Thus, registration methods would benefit from the correlation that exists between spine and vertebrae deforma-
tions. Moreover, vertebral deformations and spinal deformations in AIS patients are probably physiologically
linked [30]. Thus analyzing vertebral deformations in the context of their underlying spinal deformation will
lead to a better understanding of scoliosis progression.

Vertebrae shapes were already studied on dry human specimens [24], their deformation patterns were doc-
umented on scoliotic chickens [6] and asymmetric vertebral growth was experimented on rats [30]. However,
our method offers the possibility of analyzing real patients and to visualize the relationships between the spinal
deformities and vertebral deformities.

For this experiment 117 patients were selected and 14 anatomical landmarks for each vertebrae were digitized
from the patients’ radiographs. The principal deformation modes were then extracted using both the inter-
vertebral transformations and the anatomical landmarks. Figure 10 illustrates that large deformations of the
spine can be connected with vertebral deformations. In this particular case, the development of a thoracic curve
(the camera does not move) is associated with an asymmetrical deformation of the vertebral bodies near the
curve apex.

Although, vertebral deformations appears to be connected with spinal deformations our method cannot con-
clude if there is a causality link (or what this link is). The relationships observed between spinal curves types
and vertebral deformations could however be used to validate conclusions obtained from animal studies or from
biomechanical simulations.
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5 Conclusion

A method to extract the principal modes of deformation from articulated models was described. The method
consists in performing a principal component analysis in the tangent space of a Riemannian manifold. This
manifold is composed of rigid transformations that describe the spine shape and also includes anatomical land-
marks. We applied this method to databases of scoliotic patients reconstructed in 3D using biplanar radiographs.

Results suggest that PCA applied to a suitable representation of the spine, namely a set of rigid transfor-
mations, leads to an algorithm that can expose natural modes of deformation of the spine. Clinically relevant
patterns of deformations were extracted and dimensionality reduction was successfully achieved. Patterns de-
fined in existing surgical classifications were automatically identified from an unclassified group of scoliotic
patients. The relationships that exists between clinically used 2D classifications and principal deformations
modes were also assess qualitatively. Quantitative analysis will be performed in the future to demonstrate the
qualities of the proposed method to the medical community.

Moreover, the application of the proposed method in the context of 3D classification of the scoliotic defor-
mations was demonstrated by comparing the principal deformation modes of two groups of the Lenke classifi-
cation. This experiment lead to the identification of deformations patterns that would have been very difficult
to identify using another approach. An analysis of different patterns extracted from all Lenke’s classes using
the proposed method would thus be interesting to realize in the future.

One important characteristic of the proposed method behind these promising results is the absence an arbi-
trary selection of clinical indices. All the information needed to describe the 3D spine models is used, but it is
regrouped into uncorrelated modes and sorted in descending order of explained variance. The proposed method
is therefore a promising analytical tool and it will certainly contribute to the definition of new 3D classifications.

We also showed that the vertebral deformations could be linked to the deformation of the whole spine.
This experiment is compatible with the “vicious cycle” described by Stokes et al. [30] that could explain a
progression mechanism of scoliosis. However, describing vertebrae shapes with anatomical landmarks might
be simplistic and alternate representation such as spherical harmonics or medial axis representations could also
be used.

A very promising perspective is the longitudinal analysis of patients. Multiple acquisition of the patients’
spine geometry could be used to extract progression modes instead of deformation modes. This could be a
significant breakthrough since patients belonging to more severe progression modes could be followed more
closely by their physician and patients with lower progression risks could be treated less aggressively.

Finally, one of the reasons to perform dimensionality reduction on statistical shape models is to reduce the
number of DOF that needs to be optimized during model registration. The proposed method will therefore be
integrated to a spine registration algorithm in the future. It might also be useful for the integration of a large
number of rigid structures in non-rigid registration procedures [19] of the whole human torso.
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