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Abstract

In this paper, we systematically review recent advancesrifase inspection using computer vision and
image processing techniques, particularly those baseéxtare analysis methods. The aim is to review
the state-of-the-art technigues for the purposes of vigisplection and decision making schemes that are
able to discriminate the features extracted from normaldefdctive regions. This field is so vast that it
is impossible to cover all the aspects of visual inspectidns paper focuses on a particular but important
subset which generally treats visual surface inspectigexdare analysis problems. Other topics related to
visual inspection such as imaging system and data acquisite out of the scope of this survey.

The surface defects are loosely separated into two typesi€acal textural irregularities which is the
main concern for most visual surface inspection applicatid he other is global deviation of colour and/or
texture, where local pattern or texture does not exhibibatmalities. We refer this type of defects as shade
or tonality problem. The second type of defects have begelaneglected until recently, particularly when
colour imaging system has been widely used in visual ingpeeind where chromatic consistency plays an
important role in quality control. The emphasis of this syrthough is still on detecting local abnormalities,
given the fact that majority of the reported works are degliith the first type of defects.

The techniques used to inspect textural abnormalities mmisked in four categories, statistical ap-
proaches, structural approaches, filter based methodsnadel based approaches, with a comprehensive
list of references to some recent works. Due to rising denaarttipractice of colour texture analysis in
application to visual inspection, those works that are idgalith colour texture analysis are discussed
separately. It is also worth noting that processing veeabred data has its unique challenges, which con-
ventional surface inspection methods have often ignorebaot encounter.

We also compare classification approaches with noveltyctleteapproaches at the decision making
stage. Classification approaches often require supertriggtng and usually provide better performance
than novelty detection based approaches where traininglyscarried out on defect-free samples. How-
ever, novelty detection is relatively easier to adapt amuhisicularly desirable when training samples are
incomplete.
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Figure 1. Example defects on different types of surfacesmfieft: Steel [109], stone [72], textile [116], wood
[122], and ceramic tiles [149].

1 Introduction

Non-destructive visual inspection for texture and/or colmbnormalities has application on a variety of surfaces
e.g. wood, steel, wafer, ceramics, and even non-flat obgets as fruits and aircraft surfaces, and is highly
demanded by industry in order to replace the subjective apdtitive process of manual inspection. For
example, in ceramic tile production, chromato-texturadgarties of the final product can be affected by a
variety of external factors that are difficult to control,chuas colour pigments, humidity, and temperature.
Thus, online monitoring and feedback control of the wholedpiction line becomes desirable.

There are numerous reported works in the past two decadegyduinich computer vision based inspection
has become one of the most important application areas. [ZRjmand Newman and Jain [93] provided a com-
prehensive overview of surface inspection in late eighdied mid nineties, respectively. Recently, Li and Gu
[69] surveyed recent advances in free form surface inspectiowever, there have been significant advances
in all aspects of surface inspection using computer visiothé recent years. There are also newly emerging
topics such as tonality inspection and increasing use @ucamaging devices which requires algorithms ef-
ficiently deal with vector-valued data. This paper focusesh® recent developments in vision based surface
inspection using image processing techniques, partigulanse that are based on texture analysis methods.

The visual inspection process often involves texture ancdtour analysis and pattern classification (de-
cision making). The former is mainly concerned with feattegpresentation and extraction, as well as data
perception and modelling. The latter consists of pattepnasentation, cluster analysis, and discriminant anal-
ysis. We discuss the texture feature extraction and asailydour categories, hamely statistical approaches,
structural approaches, filter based methods, and modell lzggroaches. A categorised list of representative
works are given as pointers to these methods discussedsipdaper. Some recent applied comparative studies
are also reviewed. However, it is worth noting that surfatgpection using texture analysis should not be
considered the same as general texture segmentation asificktion. Both defect-free and defective areas
of inspected surfaces can be texturally unstationary,they will be often further segmented into smaller re-
gions while in defect detection the defective region shdnddreated as a whole no matter how unstationary it
is. Classifying surfaces into defect-free and defectivalse different from texture classification, as defective
samples are not necessary form a single class and the dgbest may only be partially predicated before-
hand. Additionally, in some applications false positiveggcting good samples) is more forgivable than false
negative (missing defective regions or samples).

A significant differentiating factor in visual inspectiop@oaches is that of supervised classification ver-
sus novelty detection. For applications where both normdldefective samples can be easily obtained and
pre-defined, supervised classification based approachesaally favoured. However, when defects are unpre-
dictable and defective samples are unavailable, novetgcten is more desirable. Both of these approaches
will be reviewed and compared in the context of defect diBct

Aside from inspecting textural faults, inspecting tonatiefects in terms of overall visual impression is also
a significant production quality factor. The variation ofoail colour or textural characteristics from surface
to surface is known as the tonality problem. Any changes énttimality, however subtle, will still become
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Table 1: Inexhaustive list of textural defect detection moelis

Approach Method References
Statistical 1. Histogram properties [58, 133, 57, 96, 94]
2. Co-occurrence matrix [30, 121, 48, 10, 120, 101, 47, 66]
3. Local binary pattern [47, 96, 95, 79, 80]
4. Other graylevel statistics [21, 118, 131, 61, 23]
5. Autocorrelation [145, 46]
6. Registration-based [73, 143, 32, 146]
Structural 1. Primitive measurement [60, 123]
2. Edge Features [142]
3. Skeleton representation [19]
4. Morphological operations [60, 123, 82]
Filter based 1. Spatial domain filtering [2,137,92,154, 101, 64, 39, 90]
2. Frequency domain analysis [113, 151, 20, 37, 127, 18, 129]
3. Joint spatial/spatial-frequency [17, 52, 38, 59, 117,186, 62,

132,128, 112, 152, 9, 63, 6, 89, 84,
119, 153, 130, 72]

Model based 1. Fractal models [28, 29]
2. Random field model [26, 102, 101, 5, 108]
3. Texem model [149]
Colour texture analysis [60, 123,131, 80, 122, 39, 130, 149]

for defect detection

significant once the surfaces are placed together. Thegmoisl compounded when the surface of the object is
not just plain-coloured, but highly textured. In applica$ like tile production it is important to maintain the
tonality consistency.

The rest of the paper is organised as follows. As the teclesigeviewed in textural defect detection generally
include those that have been used in tonality inspectiotiyutal defect detection and related texture analysis
techniques are first discussed in Section 2. Tonality irtgpets then reviewed later in Section 3. The ability for
a texture analysis technique to be extendible to deal withucdmages is particularly important for applications
using colour imaging. Thus, colour texture analysis is sgply discussed in Section 4. Section 5 compares
classification oriented approaches with novelty detedbased approaches. Finally, Section 6 summaries this
paper.

2 Textural Defect Detection

Texture is one of the most important characteristics intifigng defects or flaws. Fig. 1 shows some example
defects in different types of material. It provides impattanformation for recognition and interpolation. In
fact, the task of detecting defects has been largely viewseal taxture analysis problem. Features with large
inter-class variations and small intra-class variatiaessaught to better separate differing textures. Much effor
has been put into extracting useful texture features. Asribi practical to provide an exhaustive survey of all
texture features, this section concentrates on thoseitp@sithat have been widely used in texture analysis or
demonstrate good potential for application to automatpéttion.

With reference to several texture analysis survey pap&sijil, 138, 140, 114, 134], we categorise texture
analysis techniques used for visual inspection four watesistical approaches, structural approaches, filter
based approaches, and model based approaches. As alrégady a@our texture analysis is separately dis-
cussed later. Table 1 shows a summary list of some of the kéyréeanalysis methods that have been applied
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to defect detection. Clearly, statistical and filter bagggr@aches have been very popular.

2.1 Statistical approaches

Statistical texture analysis methods measure the spasiaibdtion of pixel values. They are well rooted in
the computer vision world and have been extensively appbtedarious tasks. A large number of statistical
texture features have been proposed, ranging from firstr aita¢istics to higher order statistics. Amongst
many, histogram statistics, co-occurrence matricescautelation, and local binary patterns have been applied
to visual inspection.

2.1.1 Histogram properties

Commonly used histogram statistics include range, meamgtric mean, harmonic mean, standard deviation,
variance, and median. Histogram comparison statisticty &8/, horm, L, norm, Mallows or EMD distance,
Bhattacharyya distance, Matusita distance, Divergendgtpgram intersection, Chi-square, and Normalised
correlation coefficient, can also be used as texture femture

Despite their simplicity, histogram techniques have pdotreeir worth as a low cost, low level approach in
various applications, such as [124, 13, 111]. They are iamtito translation and rotation, and insensitive to
the exact spatial distribution of the colour pixels. Thelsaracteristics make them ideal for use in application
to tonality discrimination, e.g. [13, 150]. The accuracyh@togram based methods can be enhanced by using
statistics from local image regions [15, 150]. Simple hlgséan moments, such as mean and standard deviation,
from subblocks were used for defect classification [133]cdRdly, Ng [94] proposed a histogram separation
technique based on the Otsu global thresholding method f&@@gment surface defects. However, it requires
the assumption that intensity of defective regions arerségiale from those of normal regions which is not
always true for textured surface.

2.1.2 Co-occurrence matrices

Spatial graylevel co-occurrence matrices (GLCM) [44] are of the most well-known and widely used texture
features. These second order statistics are accumuldted set of2D matrices, each of which measures the
spatial dependency of two graylevels, given a displacemector. Texture features, such as energy, entropy,
contrast, homogeneity, and correlation, are then deriv@t the co-occurrence matrix. Several works have
reported using co-occurrence matrices to detect defaoth, &s [30, 121, 133, 48, 10]. For example in [48],
livarinen et al. applied co-occurrence texture features to detecting tiefacpaper web where the normal
textures have characteristic frequency.

Co-occurrence matrix features can suffer from a number aftsbmings. It appears there is no generally
accepted solution for optimising the displacement vedtd4[ 89]. The number of graylevels is usually reduced
in order to keep the size of the co-occurrence matrix mardged is also important to ensure the number of
entries of each matrix is adequate to be statistically bidiaFor a given displacement vector, a large number
of features can be computed, which implies dedicated feagalection procedures. In a comparative study
by Ozdemiret al. in [101], the co-occurrence matrix method showed poor perémce in detecting textural
defects in textile products compared to other techniqueb ag MRF and filtering-based methods. livarinen
[47] found co-occurrence matrices and the local binaryepat{LBP) operator had similar performance in
detecting defects, while LBP was more efficient.

2.1.3 Autocorrelation

The autocorrelation feature is derived based on the olis@mvhiat some textures are repetitive in nature, such
as textiles. It measures the correlation between the inmtagté and the image translated with a displacement
vector. Textures with strong regularity will exhibit pea&sd valleys in the autocorrelation measure. It is
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closely related to the power spectrum of the Fourier transfol his second order statistic can be sensitive to
noise interference. Higher order statistics, e.g. [31, B&ye been investigated, for example, Huang and Chan
[46] used fourth-order cumulants to extract harmonic pealddemonstrated its ability to localise defects in
textile images and Wood [145] used autocorrelation of salies to detect textile defects. Nevertheless, the
autocorrelation function is generally considered as uablg for random textures with irregularly arranged
textural elements.

2.1.4 Local binary patterns

The LBP operator was first introduced by Ojalzal. [98] as a shift invariant complementary measure for local
image contrast. It uses the graylevel of the centre pixel sliding window as a threshold for surrounding
neighbourhood pixels. Its value is given as a weighted sutthreésholded neighbouring pixels. Usually, a
simple local contrast measurement is calculated as a comeplgto the LBP value in order to characterise local
spatial relationships, together called LBP/C [98]. Twmdnsional distributions of the LBP and local contrast
measures are used as texture features.

The LBP operator is relatively invariant with respect tomdes in illumination and image rotation (for ex-
ample, compared to co-occurrence matrices), and compuigdiy simple [78]. It has been applied to defect de-
tection on ceramic tile surfaces [89], wood [96, 95], and-tiae inspection [79]. Although good performance
in texture classification has been achieved [99], LBP has bm@orted as considerably lower performance than
co-occurrence matrix and filtering based approaches irctilegetextural defects on ceramic tile surfaces, on
which textures are usually randomly applied [89].

2.2 Structural approaches

In structural approaches, texture is characterisetekiure primitivesor texture elements, and the spatial ar-
rangement of these primitives [140]. Thus, the primary gadlstructural approaches are firstly to extract
texture primitives, and secondly to model or generalisespiaial placement rules. The texture primitive can
be as simple as individual pixels, a region with uniform dgagls, or line segments. The placement rules
can be obtained through modelling geometric relationsh@ia/een primitives or learning statistical properties
from texture primitives.

In [19], Chen and Jain proposed a structural approach tdifgetefects in textile images. The image
was first thresholded using histogram analysis and then veged into a data structure which represents the
skeleton structure of the texture. Statistical measurésngare taken from both location and length histograms
of the skeleton. These measurements were compared with@defired acceptance range which was learnt
from defect-free samples to detect defects. Kitdeal. [60, 123] used K-means clustering to split randomly
textured tile images into binary stacks, in which blob asslywas performed to measure the primitives. The
measurements included size, perimeter fractality, elmubgess, and spatial distribution. In [82], the authors
applied morphological operations to highlight defectsabrfcs. Wen and Xia [142] performed leather surface
defect detection by extracting edge segments and statigtievaluating those edges, for example, based on
their length and strength.

2.3 Filter based approaches

The techniques reviewed in this section largely share a camecharacteristic, which is applying filter banks
on the image and compute the energy of the filter responsesmethods can be divided into spatial domain,
frequency domain, and joint spatial/spatial-frequencsndim techniques.
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2.3.1 Spatial domain and frequency domain filtering

Measuring edge strength and edge frequency is one of thestattempts to discriminate different textures.
In the spatial domain, the images are usually filtered byigradilters to extract edges, lines, isolated dots, etc.
Sobel, Robert, Canny, Laplacian, Deriche, Laws filters Hzaen routinely used as a precursor to measuring
edge density. In [81], Malik and Perona designed a bank ¢drdifices of offset Gaussian function filters to
model pre-attentive texture perception in human visione fd proposed eigenfilters, a set of masks obtained
from the Karhunen-Léeve (KL) transform [54] of local imagatches, for texture representation.

In [64], Kumar and Pang used linear finite impulse respon#ie)(fters to detect defects in textiles. Filter
responses from both defect free and defective regions walected. Then, optimal filters were selected
based on discriminant analysis of the filters using objecfinctions, such as Mahalanobis-Singh and Fisher
criterion. Neubauer [92] exploited thréex 5 FIR filters and performed classification using histograms of
features calculated fror0 x 10 pixel regions. Zhowt al. used simple linear filters to capture line-like defects
in IC packages. Unser and Ade [137] and recently Monadjeidl. [90] employed eigenfilters in defect
detection. The authors argued that unlike other spatiatabpes, eigenfilters are image dependent and the
detailed images are orthogonal to each other.

Many other methods apply filtering in the frequency domasrtipularly when no straightforward kernel
can be found in the spatial domain. The image is transformtedihe Fourier domain, multiplied with the filter
function and then re-transformed into the spatial domauingaon the spatial convolution operation. Ring
and wedge filters are some of the most commonly used frequdmmgin filters. In [25], Coggins and Jain
used seven dyadically spaced ring filters and four wedgpesharientation filters, which have Gaussian cross
sections, for feature extraction. D’Astous and Jerniga) (Bed peak features, such as strength and area, and
power distribution features, such as power spectrum egjees and circularity, to discriminate textures.

In [127], the authors used the Fourier transform to recaosttextile images for defect detection. The
line patterns in a textile image, supposed to be defectsg wedeen out by removing high energy frequency
components in the Fourier domain using a one-dimensionalghldransform. The differences between the
restored image and the original image were considered amtmtdefects. A similar idea was explored in
[129], but low pass filtering was used to remove the periodforimation. Chan and Pang [18] extracted
harmonic peaks from horizontal and vertical power spectdlices, based on the observation that defects
usually occur in horizontal and vertical directions. Hoeewhese methods all rely on the assumption that
faultless fabric is a repetitive and regular texture. Thesthods will not be suitable for defect detection in
random textures.

2.3.2 Joint spatial/spatial-frequency methods

Since the Fourier coefficients are depending on the entiagénthe Fourier transform is not able to localise
the defective regions in the spatial domain. The classiegl @f introducing spatial dependency into Fourier
analysis is through the windowed Fourier transform. If thedew function is Gaussian, the windowed Fourier
transform becomes the well-known Gabor transform, whiah aguably achieve optimal localisation in the
spatial and frequency domains [34]. Psychophysiologitaliss, such as [35], have suggested that the human
brain performs multi-channel, frequency and orientatioalgsis on the visual image. These findings have
strongly motivated the use of Gabor analysis, along witleothultiscale techniques. Turner [135] and Bovik
et al. [24] first proposed the use of Gabor filters in texture analysiain and Farrokhnia [49] used it in
segmentation and classification of textures with dyadiecaye of the radial spatial frequency range.

The Gabor filter bank has been extensively studied in visiggddction, e.g. [38, 144, 62, 132, 9, 63, 6, 89,
130]. Kumar and Pang [62] performed fabric defect deteaiging only real Gabor functions. Later in [63], the
same authors used a class of self-similar Gabor functioclassify fabric defects. They also investigated defect
detection using only imaginary Gabor functions as an edgect®. For computational efficiency, the fabric
samples were analysed using horizontally and verticathjegted one-dimensional profiles. In [9], Bodnarova
et al. applied a Fisher cost function to select a subset of Gabattibims based on the mean and standard
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deviation of the template (defect-free) feature imagesetéopm textile flaw detection. The filtering responses
of those selected Gabor functions were supposed to haveambrdjstributions. Defects were localised by
thresholding the filtering responses from an unseen imagelsebased on the mean and standard deviation of
template filtering responses. Tsai and Wu [132] also peror@abor filter selection so that the filter response
energy of the normal texture, assumed to be homogeneousglegasto zero. Wiltschet al. [144] performed
automatic scale selection to preserve channels with marimnergy and directional information. In [38],
Escofetet al. performed multiscale Gabor filtering in a novelty detecti@mework. Defect candidates across
different scales and orientations were fused togethegusiical processes.

Havig similar properties to the Gabor transform, wavelahsform representations have also been widely
used for defect detection, e.g. defect detection and kat#din[52, 59, 117, 66, 128, 112, 152, 84, 119, 153,
72]. Wavelet analysis uses approximating functions thatlacalised in both spatial and spatial-frequency
domain. The input signal is considered as the weighted suoveflapping wavelet functions, scaled and
shifted. These functions are generated from a basic waj@iehother wavelet) by dilation and translation.
The spatial resolution of wavelet transform is adaptedsdréquency content, unlike in Gabor transform the
spatial resolution is constant. In [117], Sari-Sarraf aratiéiard performed discrete wavelet transforms on
fabric images. The detailed images were fused togetherodupe a feature map in which the normal texture
regions, assumed to be homogeneous, had small values. fHusdgere segmented by thresholds learnt from
training templates. The key process was to attenuate theatoegions, and accentuate the defective regions,
based on the assumption that normal texture was regular@nddeneous, and defects were those that broke
the local homogeneity. Scharcanski [119] also used theadesgvavelet transform to classify stochastic textile
textures. Rather using fixed dyadic scales, Kinal. [59] employed a learning process to choose the wavelet
scales for maximising the detectability of fabric defedisitif-Amet et al. [66] extracted co-occurrence and
MRF-based features from wavelet transform coefficientédoric defect detection. Graylevel difference-based
features from subbands of the wavelet transform were alglealin classifying fabric defects. Recently, Yang
et al. [153] used adaptive wavelets resulting in fewer scales ematpwith the standard wavelet transform.
The wavelet functions were adaptively selected based ogctoe function measuring the ratio of average
energies between defective regions and defect-free regiime method achieved better performance than the
standard wavelet transform, but needed supervised topinivavelet frames [136] and image reconstruction
techniques using wavelets were also used for defect detefdb2, 128]. Recently, in [71] Lin used the one-
level Harr wavelet transform to decompose surface baraigerl chip images and extracted wavelet features
from normal samples and testing samples were statisticallgpared based on Hotelling, Mahalanobis, and
Chi-square distances to detect ripple defects. The expatahresults showed that Hotelling and Mahalanobis
measures were superior in detecting those ripple defeats@hi-square testing. Very recently, Truchetet and
Laligant [126] gave a very detailed review on wavelet arialysindustrial applications.

2.4 Model based approaches

Model based methods include, among many others, fractaélm{fi3], autoregressive models [85, 27], random
field models [68], the epitome model [53], and the texem mgo&d].

Fractals, initially proposed by Mandelbrot [83], are getmoeprimitives that are self-similar and irregular
in nature. Fragments of a fractal object are exact or stalstopies of the whole object and they can match
the whole by stretching and shifting. Fractal dimension kacdnarity are the most important measurements
in fractal models. The former servs as a measure of complerid irregularity; and the latter measures the
structural variation or inhomogeneity. In [28, 29], ConadaProenca used box counting to extract fractal
features for detecting defects in fabric images. In a coatpear study by Ohanian and Dubes [97], the fractal
method performed reasonably well against co-occurrendgams, Gabor filters, and Markov random fields in
texture classification. However, it has achieved limiteccgss in real applications. Fractals can have the same
fractal dimension but look completely different. Fractabaels are mainly suitable for natural textures where
self-similarity may hold.
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MRF theory provides a convenient and consistent way for ingecontext dependent entities such as
pixels, through characterising mutual influences among satities using conditional MRF distributions [68].
The establishment of the equivalence between MRFs and @ibbi#bution [42, 8] provided tractable means
for statistical analysis as Gibbs distribution takes a naigipler form.

In [26], Cohenet al. used Gaussian Markov Random Fields (GMRF) to model defeet textile web.
The inspection process was treated as a hypothesis testibem on the statistics derived from the GMRF
model. The testing image was partitioned into non-oveitagpsub-blocks, where each window was then
classified as defective or non-defective. Bay&tal. [S] implemented this method in a real-time application
with a dedicated DSP system. In [101], the authors showddMIRE based methods were competitive in a
comparative study against other statistical and specasgd methods in defect detection.

Very recently, Xie and Mirmehdi [148, 147, 149] proposed aatatatistical model, called texture exemplars
or texems, to represent and analyse random textures. In-Ey@ostructure, a texture image, as the first layer,
is considered to be a superposition of a number of texturepbas, possibly overlapped, from the second
layer. Each texture exemplar, or simply texem, is charesgérby mean values and corresponding covariances.
Each set of these texems may comprise various sizes frogrealiff image scales. Different Gaussian mixture
models were explored to learn these texem representat®inslar to the epitome model [53], only raw pixel
values are used instead of filtering responses. Howevekeuttie epitome the texem model does not enforce
the texture primitives condensing to a single image patt¢te Model was applied to localise defects on random
textured ceramic tile surfaces and showed significant ingrents compared against Gabor filtering based
methods in a novelty detection framework.

2.5 Comparative studies

A classification of the texture analysis techniques usedédect detection is shown in Table 1. As mentioned
earlier, the statistical and filter based methods have befavour in terms of the amount of research reported.
It is also worth noting that the categorisation of the textanalysis techniques used for defect detection as de-
scribed above and listed in Table 1 is not a crisp classifinafl here are techniques that combine methods from
different categories for texture analysis, e.g. [66] aggplo-occurrence measurement on wavelet transformed
detail images.

There are several comparative studies in the literatuteetizduate texture analysis methods in application to
defect detection. It must be noted that different studiesdifferent datasets and possibly different parameter
settings. Ozdemiret al. [101] compared six texture features, consisting of MRF, Kdnsform,2D Lattice
filters, Laws filters, co-occurrence matrices, and a FFBthasethod, for detecting textile defects. Texture
modelling using a highdth) order MRF model gave the best detection result. livarjd@] demonstrated LBP
and co-occurrence matrices features had similar perfareneminspecting textured surfaces. Recently in [89],
Monadjemi implemented three statistical (histogram-das®P, and co-occurrence matrices) and five signal
processing schemes (Gabor filters, directional Walsh-khadd transform, discrete cosine transform, eigenfil-
ters, and composition of Gabor filters) for randomly textuceramic tile abnormality detection. The Gabor
filter based composition scheme was found to be the mostaecorethod with good consistent performance
across various tile types.

Although a solid conclusion can not be drawn to determindottst method for defect detection, it is clearly
evident that filtering approaches, in particular Gaborrfilig, have been more popularly applied in these areas
(cf. Table 1). However, an attractive idea is to use locafjimeburhood pixel relationships to model the
texture, e.g. using methods based on the LBP, MRF, or therapiand texem models. In fact, multi-channel
filtering supports the claim that the joint distribution afighbouring pixels determines texture appearance,
as the joint distribution of pixel values in the filter suppwindow determines the distribution of the filter
response [67]. Notably, Varma and Zisserman [139] demaitesirbetter performance in texture classification
using small neighbourhoods than using filter bank-basedoappes. Representing texture using primitives
is also effective, for example the texton representatioowéier, due to the difficulties in explicitly deriving
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Figure 2: Example ceramic surfaces with three differenbctatic tonalities (images from the authors of [75]).

primitive representation and associated displacemeas rtihere are relatively limited works using structural
approaches (cf. Table 1).

As image textures may often contain both statistical anacgiral properties, a texture analysis method
should be able to represent both types of properties in dodeompletely describe the texture [46]. Model-
based texture analysis methods can generally represdnptaygerties, e.g. [155]. Statistical models and their
estimation have recently been an attractive topic, for gtarfb3].

3 Tonality Inspection

In industrial quality inspection of colour textured sudagc such as ceramic tiles or fabrics, it is also important
to maintain consistent tonality during production. It isicerned with inspecting consistency among products
regarding visual perception. Here, visual perception lisuefers to chromatic, textural, or both appearance.
Tonality variations, although subtle, can still be disda@imonce the surfaces are put together. This is therefore
another important quality factor. Tonality inspection dancarried out on both uniform pattern surfaces and
randomly textured surfaces, but manual detection is not tridsome but rather difficult. Problems such as
spatial and temporal variation of the illumination may aatuce effects which make tonality grading even more
difficult. There are clearly increasing research on thigés®.g. [3, 77, 11, 12, 13, 14, 106, 4, 56, 74, 75, 76,
107].

In [4], Baldrichet al. segmented the tile image into several stacks using a K-naggmieach. Then statistical
measures were used to represent local and global colourmiafmn and segment chromatic and shape charac-
teristics of blobs within each stack. However, this wasglesi for a specific family of grainy tiles and may
not be applicable to other types of randomly textured tile$77], Lumbreraset al. used wavelet transforms to
assess different colour channels and various decomposititemes to find appropriate features in order to sort
tiles into perceptually homogeneous classes. The feakotnrs were classified to the nearest class by using
Fisher's linear discriminant function. Similar work hasebereported in [3], using wavelet analysis in RGB
channels. The visual perception concerned with in thes&syauch as [4, 77, 3], include both textural and
chromatic properties.

There are also scenarios in which consistency of chrombtcacteristics are as predominantly important
as for visual perception, for example [13, 74]. Fig. 2 giveshsan example where three surfaces have three
different chromatic tonalities with very subtle differexsc Kauppinen [56] used RGB colour percentile features
which were calculated from cumulative histograms to cfgssood surfaces. Penarandgal. [106] computed
the first and second histogram moments of each channel of @ d®lour space as chromatic descriptors to
classify tiles according to visual perception. Very rebertopezet al. [74, 75] used higher order histogram
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moments from each channel iti*a*b* colour space to characterise the colour tonality of cerditgs. In

[11, 12], Boukouvala®t al. presented spatial and temporal constancy correction afrthge illumination on
the surfaces of uniform colour and two-colour (fix) pattertiées. The luminance and the average colours in
image channels, such as red, green, and blue, were useddampéonality grading. Later in [13], the same
authors proposed a colour histogram based method to autathagrade colour shade for randomly textured
tiles by measuring the difference between the RGB histografma reference tile and each newly produced tile.
By quantising the pixel values to a small number of bins fahelaand and employing an ordered binary tree,
the 3D histograms were efficiently stored and compared. r8ereeasures were investigated to perform the
histogram comparison. Normalised cross correlation wasddo be the most appropriate one as it gave the
most consistent performance and also had a bounded rangeallbiwed thea priori definition of thresholds
for colour tonality. In [14], the authors applied perceptsimoothing before colour tonality inspection. In
[150], Xie and Mirmehdi further explored by incorporatingchl chromatic features to discriminate subtle
colour tonality difference. These studies suggested tlodtady measurements, particularly colour histograms
and their related statistics are useful in colour tonaléfedt detection. Smoothing to reduce noise interference
(prehistogram computation) has also been found benefic@lpur tonality discrimination [14, 150].

4 Colour Texture Analysis

Due to the increasing computational power and availahilftgolour cameras, there are rising demands to use
colour when necessary. There has been a limited but inagashount of work on colour texture analysis
applied to surface inspection recently (cf. Table 1).

Most colour texture analysis techniques are borrowed fraathods designed for graylevel images, such as
co-occurrence matrices and LBP. This extension of graylexture analysis techniques to deal with colour
images usually takes one of the following forms:

1. Processing each channel individually by directly apmygraylevel based methods [16, 40, 41, 80, 71]:
The channels are assumed independent to each other anchendpatial interactions are taken into
account.

2. Decomposing image into luminance and chromatic charjhiél3, 105, 36, 91, 70]: Transforming the
colour space so that texture features are extracted fronuthmance channel and chromatic features
from the chromatic channels, each in a specific manner. Tieetgmn of the colour space is usually
application dependent.

3. Combining spatial interaction within each channel andraction between spectral channels [115, 60,
104, 50, 125, 7, 88, 55, 45, 103]: The graylevel texture amiechniques are applied in each channel,
while the pixel interactions between different channebs aso taken into account. Also, some works
perform global colour clustering analysis, followed by tiaanalysis in each individual stack.

Techniques independent of graylevel methods have alsoditsmpted:

4. Using fully three dimensional models to analyse coloxiuies [53, 149]: The spatial and spectral inter-
actions are simultaneously handled. The main difficultiesedn effectively representing, generalising,
and discriminating three dimensional data.

Caelli and Reye [16] processed colour images in RGB chanustsgy multiscale isotropic filtering. Fea-
tures from each channel were then extracted and later cechliam classification. In [40], the author used the
KL transform to decorrelate the RGB channels into orthogeigenchannels. A recursive MRF model was
performed in individual channels for texture segmentatlater in [41], Haindl and Havlicek used a similar ap-
proach for colour texture synthesis. Maenpéal. [80] measured colour percentiles based on the accumulated
histogram in each RGB channel as chromatic features, and@arence matrices and LBP features as textural
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features to inspect wood surfaces. Lin [71] extracted vevelatures from each RGB channel separately to
detect ripple-like defects in surface barrier layer chips.

Several works transform the RGB colour space to other capaces to perform texture analysis so that
chromatic channels are separated from the luminance change[110, 105, 36, 91, 70]. In [105], Pasclais
al. projected the colour images into the xyY colour space. Thedaromaticity coordinates (x,y) were com-
bined into one, which provided the chromatic features. Umexfeatures were extracted from the Y channel.
Dubuisson-Jolly and Gupta [36] used a multi-resolutionuiameous auto-regressive model to compute the
texture features. Very simple colour features were saleftten theY uv colour space. Similarly, Monadjemi
et al.[91] used hue-like colour features, and Hadamard and Gednusform texture features to classify outdoor
scenes. Liapiet al. [70] transformed colour images into tHea*b* colour space in which discrete wavelet
frame transform was performed in thechannel. Local histograms inandb channels were used as chromatic
features. Recently, Tsat al. [130] also transformed colour images into théa*b* space, from which two
chromatic representations were derived for each pixelurpltue and chroma (colourfulness). Gabor filtering
was then performed in these two channels. The authors atgaegdrocessing images in these two chromatic
channels only could be resilient to illumination changebeyrassumed that defects were chromatically dif-
ferentiable. However, a large set of defects occur due emsity irregularities. For example, changes in gray
shade will not introduce differences in hue and chroma.

The importance of extracting correlation between the chbfior colour texture analysis has been addressed
by several authors. One of the earliest attempts was reporfd 15]. In [104], Panjwani and Healey devised
a MRF model to encode the spatial interaction within coldwarmels and between colour channels. A similar
idea was explored in [55] for unsupervised colour image segation. In [50], Jain and Healey used Gabor fil-
ters to obtain texture features in each channel and oppéestutres that capture the spatial correlation between
channels. Thai and Healey [125] applied multiscale oppofeaiures computed from Gabor filter responses
to model intra-channel and inter-channel interactions[88], Mirmehdi and Petrou perceptually smoothed
the colour image textures in a multiresolution sense bedegamentation. Core clusters were then obtained
from the coarsest level and initial probabilities were gissd to all the pixels for all clusters. A probabilis-
tic reassignment was then propagated through finer levéilsfuihsegmentation was achieved. Simultaneous
auto-regressive models and co-occurrence matrices hewbedn used to extract the spatial relationship within
and between RGB channels [7, 45, 103]. In [60], the authafepeed colour clustering, followed by binarised
spatial pixel distribution analysis, to identify textuddfects in colour ceramic tile images. The colour cluster-
ing and binarisation in the spatial domain partially takés iaccount both spatial and spectral interactions.

There is relatively limited effort to develop fullyD models to represent colour textures. Bikdata space
is usually factorised using one of the approaches mentiabede, then the data is modelled and analysed
using lower dimensional methods. However, such methodstaidy suffer from some loss of spectral infor-
mation, as the colour image data space can only be appratimdgcorrelated. The epitome [53] and texem
[149] models provide compa8D representations of colour textures. The image is assumbd & collection
of primitives relying on raw pixel values in image patchesieTheighbourhood of a central pixel in a patch
are assumed statistically conditionally independent.pitoene, a hidden mapping guides the relationship be-
tween the epitome and the original image; in texem, specifipping is provided by using multiple smaller
epitomic representations. These compact representagbdmoais inherently capture the spatial and spectral in-
teractions simultaneously. However, fBID methods are usually computationally expensive. Speeiaviare
and software are necessary in order to adapt to real timerpaathce.

Visual inspection using colour texture analysis is stithly under-developed in the literature and only a
limited number of works have been reported so far. Howelierdemand for colour visual inspection is rising.

5 Classification and Novelty Detection

The primary goals of visual inspection are detection andsifization. This involves choosing an appropriate
decision making scheme which is usually referred to as patiassification. Generally, this can be divided
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into supervised classification and unsupervised (or sepiwised) classification. The following gives a brief
review of these two approaches in relation to visual inspact

5.1 Visual inspection via supervised classification

In supervised classification, the input pattern, based atufes derived from earlier stages, is identified as a
member of a pre-defined known class. This approach has beletywised in visual inspection, e.g. [144, 61,
122, 109, 90, 84, 74, 75].

The K-Nearest Neighbour NN) classifier is a simple nonparametric supervised digtdrased learning
algorithm where the pattern is assigned to the class sharéldebmajority of theK nearest neighbours. In
[74, 75], Lopezet al. used K NN to classify ceramic tile surfaces based on chromatiafeatextracted from
individual channels. The authors also investigated varioalues of K in terms of classification accuracy.
Mandriotaet al. [84] also appliedK’NN to classify filter responses and wavelet coefficients &pact rail
surfaces. Contrary to [74, 75], the authors did not find anjop@mance improvement on their dataset by
increasing the valu&’. Wiltsh et al. [144] used a parametric minimum distance based classifiaspect steel
images. Latif-Ameet al. [66] also used a Mahalanobis distance based parametrgifidasRecently, Pernkopf
[109] classified steel surfaces based on data likelihoodpobea from coupled hidden Markov random fields.
In [18], Chan and Pang classified four types of fabric defbgtéitting into the expected feature model.

Artificial neural networks have been extensively used ingiee making procedures due to their ability to
learn complex non-linear input-output relationships. @][ raw pixel values in textile images were extracted
from local neighbourhood as the textural feature for eadividual pixel. PCA was then applied to the feature
vectors to reduce the feature space dimension. Finallgdfierward neural network was used to classify each
pixel. Recently, Monadjeret al. [90] applied a back propagation neural network &N to classify ceramic
tile surfaces using various texture features, such as cormnce matrices, LBP, Gabor filtering, eigenfiltering,
and discrete cosine transform. They proposed a neural nethat generally outperformed tHENN classifier.
Another popular network is the Self-Organising Map (SOMRjah is mainly used for clustering and feature
mapping [51]. Niskneret al. [57, 96, 122] performed SOM based clustering of wood sugaddowever,
although the clustering is unsupervised, the labelling efect-free and defective samples in the SOM map
was manually performed. Support vector machines (SVM)de abked to classify surfaces, such as [84] and
[116]. For example, in [84], SVM was used to classify defduased features extracted from histograms,
co-occurrence matrices, and shape information of defectigions.

Supervised classification have been demonstrated as afpbajgwroach when both training data and testing
data are well-conditioned. For example, in [89], as highha82% accuracy was achieved while using co-
occurrence features and back propagation neural networkpared t01.46% accuracy while using x 7
eigen-filters and only trained on defect-free samples. Hewesupervised approach often involves a lengthy
training stage and, more importantly, it requires a sultistenumber of defective samples, which for some
applications can be difficult to obtain.

5.2 Visual inspection via novelty detection

In a novelty detection task, the classifier’s task is to idgnthether an input pattern is part of the data or it is
in fact unknown. As for defect detection, it involves asgigna “normal” or “abnormal” label to a pattern (e.g.
a surface or a pixel). Contrary to supervised classificatmvelty detection only needs the normal samples
for training purposes and usually uses a distance measdra @ireshold for decision making. Recently,
Markou and Singh [86, 87] gave a detailed review of noveltiedi#on approaches, using statistical and neural
network-based approaches.

Statistical parametric approaches are commonly used iraMisspection, for example [38, 132, 62, 9, 90].
The fundamental assumption is that the data distributidBaigssian in nature. Thus, it can be easily statisti-
cally modelled based on means and covariances. As midaasisins can not be used as a criterion for the
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performance of a classifier as in a supervised manner, thikalaleaperformance measure for novelty detec-
tion methods is the probability of false positives, thatdgction of good samples. Increasing the acceptance
decision boundary will then obviously decrease the riskweler, it is also clear that the probability of false
negatives depends on the acceptance region. Thus, it istosset the minimum acceptance region according
to a fixed false positive probability. For example, in a pagtm classifier, the decision boundary can be set
asp + ko with & = 2 or k = 3, which corresponds t6.0% and0.3% expected false positive rate. In some
applications, the decision boundary is simply set as themnax range of normal samples in the training stage,
e.g. [63, 64].

Probabilistic approaches, e.g. Gaussian mixture modstskernel functions to estimate general distribution
of training patterns. Each pattern is usually represenseal point in ad-dimensional feature space, whete
is the length of the feature vector. The parameters of theetren@ determined by maximising the likelihood
of the training data, usually through Expectation Maxira (EM) algorithms. The objective is then to
establish decision boundaries in the feature space anct paéerns that fall in regions of low density. The
decision boundaries are determined by the probabilityidigion of the patterns at training stage. Thus, they
can be conveniently computed by examining data likelihoolis [149], two different mixture models are
used to measure the pattern likelihoods. Novelty detecidhen accomplished by using simple parametric
thresholding, determined automatically from trainingadat

6 Conclusions

This review of recent advances in visual inspection usinggenprocessing techniques gives us some insights
into the current state-of-the-art and possible trend of #pplication area. Although the research on visual
inspection is diverse and ever-changing, the followingeoletions can be made.

1. A significant amount of reported works are based on statlsand filter based approaches in visual
inspection. This also could due to the fact that more texamaysis techniques fall in these categories
than the others.

2. Filter bank based methods have been very popular in @xtefect detection. The filters can be ma-
nipulated and designed in all sorts of directions and sdalelecompose textures in order to highlight
defects. However, it is notable that recent researchesestiggntextual analysis which directly based on
local neighbourhoods without dedicated filtering is a ping alternative approach.

3. Tonality defect detection, as a new emerging topic, shbalviewed differently to textural defect detec-
tion. Its importance will be increasingly notable as morlaovision system will be used in practice.

4. There are significant and increasing amount of work onuwrdiexture analysis, however, limited work
has so far been reported in visual inspection using colodutte analysis The majority of the existing
methods decompose the colour image into separate chamelsracess them independently or with
limited interactions.

5. It is also notable that novelty detection is important isual inspection where knowledge of defective
patterns is usually incomplete and/or unavailable. Howewben good prior knowledge is available,
supervised classification scheme should be preferred potten deliver better results.

6. In order to understand the formation and nature of thectiefé is important to be able to accurately
localise the defective regions rather than classifyingstiréace as a whole. This can provide possibilities
of classifying the defects and further studies of the ctiarstics of the defects. For example, in [65],
Kunttu and Lepisto used Fourier shape descriptor to perfiefact retrieval.

\‘

. Real time performance is highly desirable for indus@iaplication.
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8. There is also a clear need of some standard datasets drdefilebd experimental protocols in order to
carry out fair comparative analysis.
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