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Abstract 

A noise reduction scheme on digitized mammographic phantom images is presented. This algorithm is based 

on a direct contrast modification method using an optimal function which is obtained by means of the mean 

squared error as a criterion. Computer simulated images containing objects similar to those observed in the 

phantom are built to evaluate the performance of the algorithm. Noise reduction results obtained on both 

simulated and real phantom images show that the developed method may be considered as a good pre-processing 
step from the point of view of automating phantom film evaluation by means of image processing. 
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1  Introduction 

Mammography is the most effective and reliable method currently used for early breast cancer detection. 

Relevance of diagnosis mainly depends on mammographic image quality, among others are: adequate optical 

density range, good resolution and sharpness. It is the reason why periodic controls are made in 
mammographic facilities in order to ensure that everything in the mammographic chain works properly. In 

particular a mammographic phantom is used for this purpose. It is an object with the same radiological 

response (absorption properties) as an average dense breast, in which are embedded several targets 
simulating microcalcifications, masses or nodules and fibrous linear structures (fibres) of decreasing size and 

contrast. The mammographic phantom film is shown to several readers and a score is obtained by each of 

them, depending on the number of simulated objects they can see. The independent object visibility scores 
are then averaged and the resulting score is assigned to the phantom film. Automating this score by using 

computer image processing of digitized phantom film should make the evaluation of mammographic 

facilities easier and in particular less subjective.  

In this framework a way for making detection and segmentation of features easier is to enhance them 

beforehand. Image enhancement is usually made by either suppressing noise or increasing image contrast. 
Several studies have been devoted to contrast enhancement on mammographic images, while few studies 

were concerned with noise reduction [1, 11, 17, 21]. 
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 Techniques used for contrast enhancement on mammographic images include six broad categories: 

unsharp masking [12, 16], histogram equalization [19, 20], adaptive neighborhood contrast enhancement [9, 

10, 18, 22], wavelet enhancement [14, 15], fuzzy modelling [6, 24] and spatial filtering [5, 25].  

Among these techniques, adaptive contrast enhancement and wavelets proved to be more suitable for 

mammography [23]. Adaptive contrast enhancement methods use a local contrast definition and then image 
is enhanced by improving the contrast measure via a contrast modification function. Originally this method 

was proposed by Gordon and Rangayyan [10]. Dahwan et al. [9] noticed that the contrast enhancement 

functions used by Gordon and Rangayyan [10] introduced too much noise and they proposed alternative 

contrast modification functions such as the exponential and the logarithm ones. In their study [9] contrast 
measure was computed over an adaptive neighbourhood of variable shape and size. Another contrast 

measure based on edge information was defined by Beghdadi et al. [3]. Dash et al. [8] improved this method 

by modifying the contrast measure, introducing a lower degree of noise amplification and reducing the 
computational complexity. Chang et al. [4] also proposed an adaptive contrast enhancement technique based 

on a local standard deviation histogram transformation whereas Zhu et al. [27] used constrained local 

histogram equalization for enhancing details in an image while preserving its appearance. Recently Cheng et 
al. [7] presented a new homogeneity measure for contrast enhancement. Because of the very noisy nature of 

phantom images compared to mammographic images, in particular high frequency noise due to the phantom 

itself, the previous methods, widely used on mammographic images, are not directly usable for detecting 

embedded objects in the phantom in that they enhance both noise and signal. 

In this letter, the performance of a noise reduction method based on a local contrast modification function 
is evaluated on computer simulated and real phantom images. First, a local contrast is computed for each 

pixel, depending on its neighbourhood statistical properties. An optimal contrast modification function to be 

determined is then applied. This function is found by solving an optimization problem using the mean 

squared error as a criterion. Finally the enhanced pixel value is calculated using an inverse local contrast 
method. 

2  Noise reduction scheme description 

Let I be an image of NxNy pixels where each pixel (i,j) is coded into ng grey levels i.e. takes its value in 

the set {0,1….ng-1}. The basic idea of the algorithm is to assign to each pixel (i,j), an inner and an external 

window centred on it, of (2p+1)×(2p+1) and (2p+3)×(2p+3) pixels respectively. Center area is defined as the 
set of pixels within the inner window whereas background area is the set of pixels between the inner and the 
external window. A local contrast image C is then defined as follows:   

 

[ ]

,     0)j,i(M)j,i(M if    0)j,i(C

with                             

,   
)j,i(M),j,i(Mmax

)j,i(M)j,i(M
)j,i(C

bc

bc

bc

===

−
=

         (1) 

 

where Mc(i,j) and Mb(i,j) are the mean value of  pixels belonging to the center and the background area 

respectively. Note that C(i,j) is within the range [0,1]. A contrast modification function Ψ whose 
determination is detailed in section 3, is then applied to image C in order to enhance features to be detected. 

The resulting image is denoted by C’=Ψ(C). So Ψ is defined as:  

Ψ : [0,1] → [0, 1]  

To transform image C’ into the grey level domain of image I, the following transform is applied:  
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This transform yields an image E, which is an enhanced version of image I.  

From a practical point of view, only inner and external window parts whose intersection with image I is 
not empty, are used for computing local contrast C on image I boundary. In the case where  Mb(i,j)≤Mc(i,j) 

and C’(i,j)=1 we put E(i,j)=ng-1.   

3  Optimal contrast modification function 

In the case of mammographic digitized films, noise due to film granularity and quantum mottle can be 

modeled as spatially correlated Poisson noise [2, 26]. As a first order approximation a signal-dependent 
spatially uncorrelated Gaussian noise is used as follows [1, 21]: 

)j,i(Uj)F(i,j)     W(i,     with )j,i(W)j,i(F)j,i(I =+= ,      (3) 

where I(i,j) is the noisy observed image, F(i,j) is the noise-free image, W(i,j) is the signal-dependent noise 

and U(i,j) is a zero-mean Gaussian noise with standard deviation σ.  
First consider the case of computer simulated phantom images. With the objective of determining the 

function Ψ leading to the best approximation E of noise-free image F, we used the criterion consisting of 
minimizing the Mean Squared Error (MSE) between images F and E, defined as: 
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where NxNy is the total number of pixels in  images F, I and E.  

Let H and K be the two sets defined as: 

Η={(i,j)∈Ι / Μb(i,j)≤ Μc(i,j) }    and     L={(i,j)∈Ι / Μb(i,j)>Μc(i,j) }. 
The function Ψ is then approached as a piecewise constant function. The local contrast range [0,1] is split 

up into M identical segments hk (k=1,2,….M). In each subinterval hk,Ψ is assumed to be a constant αk : 
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By taking Eqs.2 into account, Eq.4 becomes:  
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So MSE minimization leads to solve the above equation for βk for each segment hk. This may be done on 
computer by means of algorithms devoted to root finding such as MATLAB software (algorithm used for 
that purpose involves computation of the eigenvalues of a companion matrix. These eigenvalues are the roots 

of the polynomial). Only βk values less than one are taken into account. Thus the optimal contrast 

modification function Ψ is defined by the set of αk=1-βk  (k=1, 2,…M). 

In the case of real phantom images the function is determined from results obtained on simulated 

phantom images as it is explained in the next section. 

4  Results and discussion  

First, in order to perform quantitative evaluation of the noise reduction method described in the previous 

sections, computer simulated images containing objects similar to those observed on the phantom were 

generated with different global contrast and noise levels using Eq. 3. Global contrast CG level is defined as 
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where Go and Gb are the mean grey level of the object and the background respectively. Only poor contrast 

objects such as masses and fibres and in particular the largest in size mass and fibre are studied in this paper. 

For each previous target four noise-free images F corresponding to a global contrast level CG of 10, 20, 30 
and 40% were generated. Three signal-dependent noise W (Eq.3) were then associated with each noise-free 

image F for giving images I (Eq.3). Images W were generated so that image Signal-to-Noise Ratio (SNR) 

defined as 
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takes 21, 15 and 9dB values, which simulate low, intermediate and high noise levels respectively. Thus 12 
images I were obtained for each target (mass or fibre). Images were coded on 256 grey levels and their sizes 

varied from 256x256 to 336x336 pixels for masses and fibres respectively. Figure 1 shows some of them. 

For each image I, we varied the p parameter value characterizing the size of inner and external windows 

used for computing local contrast C (Eq.1). For each p value we applied the method described in section 3 

for determining the corresponding piecewise constant Ψ function and hence by the way of Eqs. 2 and 4 we 
estimated the MSE. For a given image I the optimal p value (optimal window size) was then defined as the 

one yielding the minimal MSE value among those previously computed.  
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           (a)              (b)                 (c)      (d)                            

    

                   (e)              (f)               (g)     (h) 

Fig. 1: Computer simulated images of a mass and a fibre 

(a) and (e) mass and fibre noise-free images with a CG =10% global contrast level; (b), (c) and (d): noisy 

images with SNR=21 dB for (b), SNR =15 dB for (c) and SNR=9 dB for (d); (f), (g) and (h) : same as 

(b) (c) and (d) for fibre in image (e). 

 

Local contrast C values associated with optimal window sizes are relatively small and depend on noise 

level. They do not exceed 0.15 for highest noise level images. From a practical point of view Ψ 

determination was made by using a subinterval length of 10
-3
 (M=10

3
). Figure 2 gives the plot of Ψ versus 

local contrast C for masses of Figs. 1(b), 1(c) and 1(d). It may be seen that Ψ varies linearly with C (more or 

less scattered Ψ values for largest C are due to the fact that subintervals for these C values contain very few 

pixels yielding thus statistical fluctuations). Such a behaviour was observed for all computer simulated 

images. The solid lines in Fig.2 are least-square fits to the data and are described by equations Ψ = aC +b, 

where a and b are 2 parameters. By taking the very small value of b into account, Ψ may be simply written in 

the form Ψ = aC. Figure 3 shows images obtained after applying the noise reduction scheme with the 

corresponding optimal contrast modification function Ψ = aC on the masses and fibres of Fig. 1 (b,c,d,f,g,h). 
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Fig. 2: Optimal function Ψ versus local contrast for : 

(a) : image of Fig. 1(b); (b): image of Fig. 1(c); (c) : image of Fig. 1(d) 
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By way of comparison median and adaptive noise smoothing filters (ANS) proposed by Kuan et. al. [13] 

were applied on simulated images. The window size used for each filter is the one giving minimal MSE 

value. Table 1 summarizes MSE values related to objects ( masses and fibres) of Fig. 1. As it can be seen, the 

proposed method yields the lowest MSE values.  

 

 

     

                                               (a)               (b)                 (c) 

     

                                               (d)              (e)    (f) 

Fig. 3: Noise reduction results on computer simulated images for : 

(a), (b) and (c): images of Fig. 1(b), 1(c) and 1(d) respectively. 

(d), (e) and (f): images of Fig. 1(f), 1(g) and 1(h) respectively. 

 

On the other hand tests on real images of phantom were also carried out. For that purpose 20 phantom 

films were digitized using a high drum scanner (Scanmate 11000, ScanView) with a spatial resolution of 50 

µm/pixel, 8 bits/pixel. Two sub images(256x256 and 336x336 pixels) approximately centered on the largest 
mass and fibre respectively were extracted from each digitized phantom image. Global contrast CG and 

Signal-to-Noise ratio SNR were estimated for each sub image. These estimations enabled us to deduce from 

results on simulated images the corresponding p and a parameter values to be used in this case. Figure 4 

shows results obtained from two digitized phantom images. As for simulated images, targets appear more 
visible after treatment. 
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 MSE parameter 

 Mass images Fibre images 

 1(b) 1(c) 1(d) 1(f) 1(g) 1(h) 

Noisy 

image 

140 561 2237 137 556 2188 

Median 

filter 

0.99 2.38 4.83 2.04 4.19 8.32 

ANS Filter 1.68 2.84 5.01 2.83 5.30 7.92 

Proposed 

method 

0.74 1.61 3.38 1.46 2.91 5.39 

 

Table 1: MSE parameter ( on the object) evaluated for objects (masses and fibres) on images shown in 

figs. 1 (b), (c), (d), (f), (g), (h) after applying the proposed method, the median filter and the Adaptive Noise 

Smoothing filter (ANS) according to (Kuan et al. 1985). MSE parameter is also evaluated for each noisy 

image before processing. 

5  Conclusion 

In this paper we described a noise reduction method on digitized phantom images using an optimal 

contrast modification function. Such a function was obtained from computer simulated phantom images by 

considering the mean squared error as a criterion. Noise reduction scheme turned out to provide good results 
both in simulated and real phantom images. So it might be the first step of a feasibility study for automating 

quantitative phantom image analysis by means of image processing techniques. 
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              (a)          (b) 

      

                                                      (c)         (d) 

                                                 

       (e)         (f) 

                                                         

                (g)         (h) 

Fig. 4: Noise reduction on real images of phantom 

(a) and (c) original mass images; (b) and (d) resulting images after treatment. 

(e) an (g) original fibre images; (f) and (h) resulting images after treatment.
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