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Abstract

Statistical methods are increasingly used in the analysis of FDG-PET images for the early diagnosis
of Alzheimer’s disease. We will present a method to extract information about the location of metabolic
changes induced by Alzheimer’s disease based on a machine learning approach that directly links features
and brain areas to search for regions of interest (ROIs). This approach has the advantage over voxel-wise
statistics to also consider the interactions between the features/voxels. We produce “maps” to visualize
the most informative regions of the brain and compare the maps created by our approach with voxel-wise
statistics. In classification experiments, using the extracted map, we achieved classification rates of up to
95.5%.
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1 Introduction

In 2010 there are 35.6 million people estimated to be affected by dementia worldwide. With the growth of the
elder population this number is expected to rise to about 115 million by 2050 while there is no reliable early
diagnosis method and effective treatment at hand. The most common cause of dementia is Alzheimer’s disease
(AD). Dementias do not only affect the patient himself but also his social environment. In many cases relatives
cannot handle daily life without external help. Hence, dementias also charge health care systems with huge
amounts of money (estimated to 604 billion US dollars in 2010) ([1]).

Positron emission tomography (PET) nuclear medicine provides a non-invasive, three-dimensional func-
tional imaging method that measures the metabolism in the brain. AD typically causes bilateral hypo-metabolism
in the temporal and parietal lobes, posterior cingulate gyri and precunei, as well as the frontal cortex that is im-
aged by the PET scan. Hypo-metabolism has been correlated to dementia severity by comparing measures
of cognitive function, such as Mini-Mental State Exam (MMSE) and Clinical Dementia Rating (CDR), and
cerebral metabolic rate of glucose ([2],[3]).

The American Alzheimer’s Disease Neuroimaging Initiative (ADNI) collects data of patients affected by
AD, mild cognitive impairment (MCI) and normal control (NC). This includes diagnosis based on mental state
exams (e.g. MMSE), biomarkers, magnetic resonance imaging (MRI) and PET scans. With a collection of PET
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scans, acquired with the tracer 18F fluorodeoxyglucose (18F-FDG), of more than 200 AD patients, 200 controls
and 400 MCI patients, the ADNI database provides a fairly large data set for investigations. It is engaged in the
development of early diagnosis and treatment of dementias, especially AD.

A huge amount of literature about AD suggests that first manifestations of AD occur years before symptoms
are clinically detectable. This makes nuclear medicine a promising method for early diagnosis and its predictive
abilities have been widely studied. Visual assessment by medical experts has been studied by several others,
see e.g. [3, 4, 5] for a short review. As visual reading is very time consuming there is a growing interest in
computer assisted/based PET analysis. Even well-trained experts may have a high inter-observer variation rate,
therefore, computer-aided diagnosis (CAD) is needed to help neurologists in AD detection and classification.
Recently, several CAD analysis have been studied to increase the diagnostic sensitivity and specificity: Sun et
al. [6] performed a covariance estimation of anatomical volumes of interest (VOIs); Ishii et al. [7], Drzezga
et al. [8], Scarmeas et al. [9] and several other groups used voxel-wise statistical methods such as statistical
parametric mapping (SPM) and NEUROSTAT & 3D-SSP to find a feature set of AD lesions that can accurately
distinguish normal/AD patients. Matrix factorization based analysis methods were proposed in [10, 11, 12, 13],
but captured rather large scales and were not able to detect very localized changes. Finally, machine learning
techniques such as linear discriminant analysis (LDA) or support vector machine (SVM) have shown to be also
appropriate methods for classification of large brain data volume [14, 15, 16], but they generally did not help to
explain the information content. The common character of these previous computer based works is that they do
not incorporate information about the location of discriminant information that is already available. In addition,
most of the CAD systems need a large number of samples to construct the models or rules.

This work will focus on the aspect of retrieval of information about the localization of early stage AD related
metabolic changes in the patient brain. In such a framework, only some texture features obtained directly from
the images or ROIs are used as inputs of classifiers. The advantages of such CAD system are its simple
structure, the drastic data reduction (∼ 95%) combined with an outstanding classification performance and its
fast processing speed.

The remainder of this article is structured as follows. In section 2 we introduce the image database and our
notations. Section 4 presents our approach to learn about the regions in the brain that are most informative in
the classification of AD. Section 5 presents the results of both map extraction and classification experiments.
In section 6 we discuss our findings and the article finishes with the conclusion in section 7.

2 Materials

Notations

Let us establish some definitions. Though brain scans are usually displayed as 2D slices through the brain for
preprocessing and computer based analysis, it is more convenient to consider the scans as a 3D matrix with a
three coordinates vector (j, k, �), where 1 ≤ j ≤ J , 1 ≤ k ≤ K and 1 ≤ � ≤ L. J,K,L are put for the number
of voxels in the three dimension. In this notation L corresponds to the number of transversal slices. Each
point in the image I is called a voxel with intensity I(j, k, �). In some cases we prefer a vectorized notation.
I(j, k, �) can be written as I(m) = I(j + (k− 1)J + (�− 1)JK), with 1 ≤ m ≤ M and M = JKL the total
number of voxels in the brain volume. Note that physically I(j, k, �) counts the number of photons emitted by
the radioactive marker at coordinate position (j, k, �). Throughout, X = (X1, . . . , Xp) is a vector of p feature
components. The domain of X is the set of possible observations, denoted by X , typically R+p. In this work,
we study the relation between X and a discrete target variable Y that refers to the patient class, y a realization
of Y . In this case we will use y = {+1,−1} as it is a mathematically convenient notation; of course, the
particular values of y only serve as indicators and have no meaning per se).
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2.1 Image database

All data used in the preparation of this article were obtained from the ADNI database. The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public- private partnership. The initial goal of the ADNI was to recruit
800 adults, ages 55 to 90, to participate in the survey, about 200 cognitively normal elder individuals to be fol-
lowed for 3 years, 400 people with MCI to be followed for 3 years and 200 people with early AD to be followed
for 2 years. 50% of the survey participants are selected for the acquisition of PET scans (see also table 1a). Our
analysis is based on the 18F-FDG PET data from ADNI participants, acquired with Siemens, General Electric
and Philips PET scanners, that were collected from the web site of the Laboratory on NeuroImaging (LONI,
University of California, Los Angeles) ([17]). The tracer 18F-FDG accumulates in the brain cells according to
their metabolic rate. Therefore, 18F-FDG PET visualized the metabolism in the brain. In the preparation of our
data set we used the meta information that is also available via the ADNI database.

NC MCI AD

Patients/baseline 102 207 95 404
Scans 433 956 313 1702

(a) ADNI FDG-PET preprocessed scans

NC AD

Patients/baseline 84 82 166
MMSE 28± 2 23± 2
Age 76± 5 75± 7

(b) Selected scans

Table 1: Numbers of scans per patient selected with our criteria.

2.2 Patient and scan selection

In the creation of the dataset for a statistical analysis it is absolute necessary to restrict the selection to just
one scan per patient as in the contrary case a patient recognition effect could influence the disease recognition
process, most probably resulting in a positive biased classification result. We chose to select the first scan that
was acquired for each patient, called baseline scan, as this represents best the real life case: the examiner aims
to determine whether a patient is suffering from AD or not based on the PET scan to confirm clinical exams
and exclude other diseases.
As confidence in class labels is of high importance in a supervised classification task and follow-up scans will
not be used in this analysis, we applied more restrictive criteria for the attribution of class labels as in the ADNI
database:

• Patients that were examined only once are excluded.

• For the AD group: CDR of 1 or 0.5 and MMSE 20-26 in all examinations.

• For the NC group: CDR of 0 and MMSE > 24 in all examinations.

This selection criteria result in a NC group of 84 patients with mean MMSE score of (28± 2) and an early AD
group of 82 patients with mean MMSE score of (23± 2) (see Tab. 1b). The two groups remain age matched as
initially in the ADNI survey. The age of NC patients is 76± 5 years and the age of the AD patients is 75± 7 at
the moment of acquisition of the PET scan.
Despite the high interest in MCI, we preferred a complete exclusion of MCI images for two reasons. First to
avoid derogation of the results by the influence of possible other diseases or statistical bias. Second, and most
important, the AD subjects in our data set already present very mild to mild AD cases (CDR ≤ 1, MMSE
23± 2 ). During the review of meta-data we found approx. 85% of MCI patients to be stable MCI as expected
according to a MCI to AD conversion rate in the range of 10-30% per year like stated in [4]. Excluding MCI
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non-converters from our analysis as probability for actual AD is rather low, this leaves us a remainder of 24
MCI due to AD patients. Disposing of more than 80 patients in NC and AD group including a 24 patients MCI
group would leave us with a rather unbalanced data set.
We registered the selected scans to the Montral Neurological Institute (MNI) PET brain template to achieve
voxel-to-voxel comparability between all scans. To do so we used the Matlab R� SPM toolbox (for details on
the software see [18]). After this spatial preprocessing step the images have a bounding box of 91× 109× 91
voxels. The number of voxels that is covered by the brain is about 650, 000, roughly 75% of the whole image.

3 Related Work

The principle of random forest (RF) is to combine many binary decision trees – so-called CART models – built
using several bootstrap samples coming from the learning sample L = {(X1, Y1), . . . , (Xn, Yn)} made of n
iid observations and choosing randomly at each node a subset of input features {X�(1), . . . , X�(q)}, q � p,
where �(·) is a permutation operator. Each of these CARTs (see Breiman et al. [22]) for itself has a “weak”
predictive power but the whole ensemble builds a fast classifier with high predictive power [20] even in a high
dimensional space.

To obtain a RF of T trees with n examples and p features we proceed the following way:
Require: number of trees T , q � p the number of features that has to be tested at each node to choose the best

split.
1: repeat

2: Draw a random sample of examples of size n with replacement.
3: Grow a classification and regression tree (CART) with this sample of examples and calculate the best

split between the features with a random selection of m features.
4: until T trees have been grown.

The classification for a new example is obtained by presenting the example to all trees in the forest. Each tree
votes for the class of the new example and the random forest assigns the class that got the most votes (majority
vote).

By drawing the sample for each tree at random with replacement while training the RF, several examples are
drawn multiple times and others not at all. For a sample size of n > 40 the probability that an example appears
in the sample is 1− (1− 1

n)
n ≈ 0.632. With a fraction of about 63.2% of examples to be used in the growing

of a tree there is a remaining fraction of 100 − 63.2 = 36.8% examples that were not used to grow the tree.
These examples are called out-of-bag (OOB) examples. Presenting each tree in a sufficiently large forest its
OOB examples we obtain enough votes for each example to obtain a class prediction by majority vote as in the
classification of new examples. The prediction error of the OOB examples is a good estimate for the predictive
power of the RF.

4 Methods

Generally the CAD systems for AD diagnosis involve 3 stages: image preprocessing, feature extraction and
selection and classification. Our CAD system does not have image preprocessing component because only
some features obtained directly from the images or ROIs are used as inputs of classifiers. Clinical experience
tells us that AD does not affect all the brain evenly and that there is a large inter-patient variance where hypo-
metabolism is visible in the PET images.

4.1 Finding all relevant features with the Random Forest

An optimum input dataset should have effective and discriminating features, which reduce the redundancy
of feature space to avoid the “curse of dimensionality” problem. The “curse of dimensionality” problem is
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based on the sampling density of the training data being too low to allow a meaningful estimation of a high
dimensional classification function with the available finite number of training data.

Intuitively, it seems unreasonable to automatically use all the available voxels because the magnitude of
var(ŷ) is influenced by the number of input variables. Hence, we divided the image matrix into cubic patches
and used the mean intensity of these patches as features. Assuming that metabolic changes are smaller than
15mm, we will only use patch sizes of 7×7×7 voxels and smaller. A special treatment of the image extremities
is superfluous as with patches of this size, the space not covered by the brain is at least 9 voxels. For each cubic
sub-volume of the i−th 3D scan, the mean grey level was computed and merged together to form a column
vector Xi = (X1

i , X
2
i , . . . , X

p
i )

T , with p the number of patches. Given the size of the brain scans, this feature
vector is computationally more tractable, but still very demanding. Note that this rather simple feature, the
mean intensity of each patch, was chosen to keep complexity low. However, more sophisticated features will
also be examined in the future such as 3D local binary pattern (LBP) textural features (see [19]).

The feature selection process – also called the wrapper approach – is a type of inference that attempts to
determine which of the features Xi, 1 ≤ i ≤ p, are “related” to the target variable Y . Here, the classifier is
“wrapped” by a loop that monitors its performance as features are added or deleted. The wrapper approach is
appealing because feature selection and supervised learning are essentially optimized together, as a complete
learning system, rather than sub-optimized individually. In this paper a wrapper approach is proposed for using
with RF, an ensemble learning machine recently introduced by Breiman [20]∗ and related to ensemble methods
as proposed by [21].

4.2 Construction of a brain importance map

The quantification of the feature importance (abbreviated FI) is a key issue not only for ranking the features –
from most to least important – before a stepwise estimation model but also to interpret data and understand the
underlying phenomenons. The most widely used score for the importance of a given feature is the increasing in
mean of the misclassification rate for a tree in the forest when the observed values of this feature are randomly
permuted in the OOB samples [23].

For each tree t we consider the corresponding OOB sample and permute at random the values of the i-th
feature of the sample. Then we compute the OOB error of t with these modified OOB data. The feature
importance of the i-th feature is defined as the increase of OOB error after permutation. The more the increase
of OOB error is, the more important is the feature.

The importance of a feature Xi in tree t is:

ξ∗(t)i =

�
α∈OOB∗(t) δ(yα, ŷ

∗(t)
α )

qt
−

�
α∈OOB∗(t) δ(yα, ŷ

∗(t)
α,πi)

qt
, (1)

with δ(·, ·) the Dirac delta-function which is 1 if its arguments are equal and zero in the other case, ŷ∗(t)α the
predicted classes for example α before, ŷ∗(t)α,πi the predicted classes for observation α after permuting the values
of feature i and qt the number of OOB cases in tree t. The overall importance of feature i is calculated from (1)
as the mean over all trees:

ξi =
T�

t=1

ξ∗(t)i /T. (2)

This measure is based on the assumption that the permutation of a predictor variable Xi with high importance
will lead to a higher loss in classification accuracy than a less important predictor variable.

The patch importance gained in this manner can then be transformed to a voxel importance for display and
further use on the grid of the original images just by normalizing the feature importance ξi onto the interval
[0, 1] and mapping the vector back to the original image grid. As each feature of the RF corresponds to a patch,

∗ but in principle it could be applied to any learning machine that produces a measure of feature importance.
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the importance ξi of the i-th feature is equivalent to the importance ξ(p) of patch p. To obtain the importance
per voxel ξ(m) we attribute to each voxel m part of patch p the importance ξ(p).

To obtain a brain map as independent as possible from the used image set we bootstrapped the importance
extraction, i.e. we repeated the calculation of feature importance with 50 different random samples of images
out of the whole image set. The maps shown in Fig. 2 are the mean of those 50 maps. This measure of feature
importance can be used as a map for the importance of brain regions

Further experiments (see section 5) show whether the feature selection and the distribution of importance
over the brain are consistent for different patch sizes and whether there is a preferred patch size.

If a common map for all patch sizes is desired we propose to create a combined map using a weighted mean
with the corresponding classification rate as weight. Hence, for a voxel m, the combined importance is given
by:

ξm =
�

α∈S
wαξ

α
m/

�

α∈S
wα (3)

with S the set of maps –or patch sizes–, α the index on the number of maps to be combined (1 ≤ α ≤ |S|) and
wα the classification rate of the RF that computed the importance ξαm.

4.3 Voxel-wise statistics and feature importance

We will compare the extracted importance maps with the ROIs provided by physicians and maps obtained by
voxel-wise statistics.

In 18F-FDG PET imaging, the diagnosis of AD is primarily based on the finding of bilateral temporo-parietal
hypo-metabolism where all other patterns of hypo-metabolism are suspected to have an other cause than AD
[3]. Besides temporal and parietal lobe regions of the brain that are often examined are hippocampus, posterior
cingulate, and precuneus [24, 25]. We compare all these regions to the RF importance map. To gain more detail
we divided the parietal lobe in inferior and superior parietal lobes and we divided the temporal lobe in inferior,
middle and superior temporal lobes. This results in a total of 8 ROIs. To be able to calculate a statistics for
the ROI information we generated a map composed of the ROIs using the Matlab R� toolbox WFU PickAtlas
created by [26]. This software is using the Talairach Daemon software [27] to translate semantic description
of brain areas into a voxel-wise mask of the ROIs. The created map is shown in Figure 1. This map allows
us to evaluate in which brain area the most important voxels lie and whether importance is locally related to a
specific ROI or wide spread over the ROIs.

We use voxel-wise statistics in the spirit of analysis of variance to identify the set of voxels whose patterns
clearly separate classes and sub-classes of voxels according to the category of patients. Let µm

AD and µm
NC be

the estimated mean of the m-th voxel for the AD and NC classes, respectively; and let σ2m
AD and σ2m

NC be the
estimated variance of the m-th voxel respectively, for m = 1, 2, . . . , p. These values can be easily estimated
from the feature database as follows:

µm
AD =

1

NAD

NAD�

j=1

xmj,AD, (4)

µm
NC =

1

NNC

NNC�

j=1

xmj,NC , (5)

σ2m
AD =

1

NAD

NAD�

j=1

[xmj,AD − µm
AD]

2, (6)

σ2m
NC =

1

NNC

NNC�

j=1

[xmj,NC − µm
NC ]

2, (7)



48 Kodewitz et al. / Electronic Letters on Computer Vision and Image Analysis 12(1):42-56, 2013

15 19 23 27 31

35 39 43 47 51

55 59 63 67 71

dimensions: 91x109x91
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precuneus

sup parietal
sup temporal

Figure 1: ROIs most commonly analyzed in AD detection.

where NAD and NNC is the total number of scans in the database labelled AD and NC. The class separation
distance between the AD and NC classes for the m-th voxel is defined as

Dm =
|µm

AD − µm
NC |�

1 + σ2m
AD + σ2m

NC

. (8)

and therefore points zones of potential interest for image analysis. The potential for discrimination capabilities
of each voxel increases with Dm. In the performed experiments, the features with larger Dm correspond
to large inertia. The remaining voxels led to poorer discriminative performance. The poor performance of
the small inertia voxels originates in the AD affected areas being spread sparsely in the brain. The fact that
the inertia presents some of the smaller class separation distances illustrates an important and very common
problem in multiscale analysis: although regions may be composed of several structures of different scales, it
is important to attempt to identify the good analyzing scales. In our specific case we have two indicators for a
good analyzing scale available. From medical literature we know that we are searching for metabolic changes
that are smaller than 14mm, i.e. 7 voxels. Focusing our attention on early stage AD we expect, priori, the
metabolic changes to have a size of 4-8mm. A posteriori, we obtain a feedback from the RF classifier, whose
classification performance depends on the analyzing scale.

Finally, we compare the distribution of our RF importance map with a map of the inter-class separation Dm

(see the resulting map Fig. 2b): we show good congruence between voxels ranked by RF and voxels ordered
by Dm. The two maps to compare however comprise different scales. The inter-class Dm map has in the case
of the ADNI images a range of 0 to 0.15 approx. and the RF importance map is normalized to the interval of 0
to 1. Therefore we use for each map a separate threshold to select brain regions that are supposed to be of high
interest in a AD classification task and compare the results via the number of selected patches. This allows to
assess which map selects better features for classification at same number of features. As there is by design a
direct relation between features and brain patches, this experiment can be equally interpreted as a ROI selection
experiment. We used a SVM classifier with 100-fold bootstrap cross-validation to obtain an accurate estimate
of prediction error for unknown examples. This avoids also possible effects of a double usage of the RF as map
extraction and classification method [28].
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5 Results

In results tables we will display the classification performance by giving the OOB error rate (OOB. err.)

OOB. err. = 1−
�

α∈OOB δ(yα, ŷ∗α)

q
, (9)

where ŷ∗α is the predicted class label of example α and yα the actual class label, the false positive rate (FPR)
corresponding to the OOB error rate of the NC examples, i.e. 1-specificity, and the false negative rate (FNR)
corresponding to the OOB error rate of the AD examples, i.e. 1-sensitivity. We display all values in percent and
with their standard deviation.

5.1 RF Classification performance

In the training of the RFs used to calculate the feature importance we vary the patch size from 2 × 2 × 2 to
7×7×7. This range of patch sizes corresponds to a range of 2535 (7×7×7 patch) to 109350 (2×2×2 patch)
features. Classification rates of the trained RFs declined gradually with augmenting patch size and the FNR
was consistently 1-2% higher than the FPR, as shown Table 2. The RF used to calculate the feature importance
was trained on the whole set of 84 NC and 82 AD patients. The RFs for the classification task had a size of
500 trees and at each split m =

√
p, with p the number of features, were tried to determine the best split. The

variance between the 50 calculated importance maps was of the order of 10−2. The maps were normalized to
the interval [0, 1].
Figure 2 visualizes the mean decrease in accuracy mapped back to the original image size as a colored overlay
on our indexed map to facilitate interpretation of the gained importance map. The feature importance had for
all patch sizes very similar distribution over the brain. This is why we fusion of all the maps in a single one
(Fig. 2a). As classification rates obtained in the measurement of the importance showed significant differences
for the different patch sizes (see table 2), we combine the single maps, after mapping back to the original image
size, as proposed in section 4.2.
Total classification rate, classification rate for NC group (specificity) and for AD group (sensitivity) achieved
by the RF classifier used to extract the feature importance are listed in Table 2. Best classification results are
obtained with smallest patch sizes.

cube size oob. err. [%] FPR [%] FNR [%]

2× 2× 2 17.0± 0.9 16.1± 1.4 17.9± 1.4
3× 3× 3 17.8± 1.1 16.9± 1.3 18.7± 1.8
4× 4× 4 18.5± 1.0 17.6± 1.2 19.4± 1.9
5× 5× 5 18.8± 1.0 17.6± 1.2 20.1± 1.8
6× 6× 6 20.5± 1.2 19.4± 1.6 21.8± 1.8
7× 7× 7 21.0± 1.1 20.2± 1.4 21.9± 1.8

Table 2: Error rates of the RFs used for importance measurement.

These results justify the confidence in the measured importance and for comparison. Note that there was no
data reduction, in the sense that all voxels where used to obtain the features, in this experiment. The results
obtained by map guided classification, using only a fraction of the whole data, are presented in the following
section.

5.2 Comparison of RF importance map with ROI map and Class-separation distance

Comparing class-separation distance map and the RF importance map visually it is immediately apparent that
the RF importance map points much smaller ROIs, i.e. regions of high importance (compare Figures 2a and
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(a) weighted mean of importance images of patch size 2× 2× 2 to 7× 7× 7; a detail figure of slices 48 to 55 can be
found in Figure S.1 (supplementary material)
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(b) class-separation distance map

Figure 2: Overlay visualization of (a) RF feature importance and (b) class-separation distance in AD vs. NC
classification obtained; red indicates highest importance.
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2b). To assess the distribution of important voxels over the ROIs defined in Fig. 1 we plotted an importance
histogram for each ROI. These histograms, shown in Fig. 3, confirm the visual impression. All histograms
besides those of inferior parietal lobe, posterior cingulate and precuneus have a very heavy lower tail. It means
most of the voxels forming the ROI are not important at all. In Tables 3 and 4, summarizing the key figures of the
histograms, it becomes even more visible that both maps concurrently point posterior cingulate and precuneus
as ROIs of high interest in the classification of AD vs. NC. As visible in Table 3, all voxels exceeding 75% of
maximum importance are situated in posterior cingulate, precuneus or outside the defined ROIs. The amount
of voxels of high importance not contained in a ROI is at least a magnitude lower than the amount of voxels in
posterior cingulate or precuneus. A specific look-up of those voxels not contained in a ROI revealed that those
voxels are located in close vicinity to posterior cingulate and/or precuneus. Superior temporal lobe, superior
parietal lobe and hippocampus do not contain any voxels exceeding a RF importance of 0.25.

On the contrary, the class-separation distance has less voxels with very low class-separation distance. The
percentage of voxels between .25 and .5 of maximum class-separation distance in Table 4 is much more impor-
tant than the corresponding group of voxels of the RF importance map. The class-separation distance points
posterior cingulate and precuneus as important regions in the brain as the RF importance map, but also inferior
parietal lobe. The percentage of important voxels in this lobe is even higher than in posterior cingulate. In the
RF importance map this area is of no special importance. The important areas obtained with this measure are
much larger than those obtained with the RF method.
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Figure 3: Distributions of voxel importance in the ROIs defined in figure 1. The red dashed lines indicate the
average importance of the region. Numeric results see Table 3.

5.3 RF importance in feature selection

The importance maps extracted from the ADNI data in the preceding section are now used in a feature selection
experiment. We tested the map fusioned by the weighted mean and the map extracted with patch size 2× 2× 2
as this patch size yielded the best classification result (see Table 2). For comparison we used a map of class-
separation distance (see figure 2b). A threshold is applied to the maps and only voxels whose importance,
respectively class-separation distance, is exceeding the threshold are used in the classification. This threshold
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importance % voxels in bin
mean max .25 to .5 .5 to .75 > .75

background voxels 1.13e-03 0.31 0.0025 0 0
not ROI 7.96e-03 1.00 0.24 0.078 0.032
inter hemispheric 6.87e-03 0.50 0.16 0 0
hippocampus 3.66e-02 0.13 0 0 0
inferior parietal 5.00e-02 0.40 4.6 0 0
inferior temporal 3.71e-02 0.28 1 0 0
middle temporal 3.18e-02 0.31 0.6 0 0
posterior cingulate 5.35e-02 0.83 5.4 0.8 0.3

precuneus 6.49e-02 0.92 5.8 1.6 0.14

superior parietal 2.24e-02 0.21 0 0 0
superior temporal 1.14e-02 0.24 0 0 0

Table 3: Comparison of the importance map obtained by RF (see fig. 2a) and the map of ROIs (see fig. 1).

class-sep. dist. % voxels in bin
mean max .25 to .5 .5 to .75 > .75

background voxels 1.27e-03 0.10 0.45 0.049 0
not ROI 2.19e-02 0.15 16 1.3 0.27
inter hemispheric 2.73e-02 0.13 25 3.1 0.64
hippocampus 4.91e-02 0.08 73 3.8 0
inferior parietal 4.75e-02 0.12 23 24 4.4

inferior temporal 4.94e-02 0.11 59 13 0
middle temporal 4.42e-02 0.11 51 10 0.01
posterior cingulate 4.69e-02 0.13 39 17 2.7

precuneus 5.20e-02 0.14 36 20 7.1

superior parietal 4.16e-02 0.11 40 14 0
superior temporal 3.11e-02 0.11 28 3.9 0.038

Table 4: Comparison of the class-separation distance map and the map of ROIs.

is swept over the whole scale as there is no analytical method to determine a good level for this value. All
other voxels are dropped. As class-separation distance and feature importance of RF inhibit different scales
the results are compared via the selected number of patches. We display classification rates for a patch size of
3× 3× 3 as this patch size resulted in best classification rates.

Figure 4 compares the obtained classification results. With all three examined maps we observe a significant
raise of the OOB error rate if we choose a threshold selecting less than 750 patches. With a threshold that selects
more than about one thousand patches, the OOB error rate is stable for all three maps. The best OOB error rate
of 4.48% is achieved with the fusioned RF importance map using 2500 patches. The 2× 2× 2 importance map
achieved an OOB error rate of 4.52% using 2000 patches. The difference between these results (0.04%) is not
significant (p-value < 0.5). For both importance maps we can assume that the best classification outcome with
this setup is achieved selecting 2000 to 2500 patches, because both the classification error and the standard
deviation of the classification error over the bootstrap samples attain their minimum in this range of patches.
The class-separation distance map performed best with 5300 patches with an OOB error rate of 5.9%. The
numerical results, presented in Table S.1 (supplementary material), show that the OOB error rate is slightly
increasing for large numbers of patches.
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Figure 4: Feature, or equivalently ROI selection, by applying thresholds to RF importance map (left & middle)
and class-separation distance map (right). The patch size is 3× 3× 3 voxels.

6 Discussion

The classification rates of the RFs used to extract the feature importance reduced with growing patch size.
According to the numeric results, we conclude that the changes in brain metabolism due to AD have a typical
scale of 6mm or smaller as best classification results were obtained for a patch size of 2 and 3 voxels cube.

The maps for the importance of different brain areas that were obtained by our machine learning approach
using the RF classifier indicated very similar areas of interest over all patch sizes. Those areas are much smaller
than expected after literature study, but, in accordance with literature, localized mainly in parietal and temporal
lobe. As regions of highest interest for the distinction of NC and AD using 18F-FDG PET scans we found
posterior cingulate and precuneus. A certain amount of voxels not included in any of the defined ROIs was
found to be also of high interest. In fact, the voxels of maximum RF importance and class-separation distance
were not contained in any defined ROI but in close vicinity to posterior cingulate and/or precuneus. This finding
might be due to the imperfectness of registration to the MNI standard brain. We suggest therefore to consider
slightly enlarging ROIs when using a model similar to ours.

Comparing the fusioned RF importance map with a class-separation distance map in a feature selection
experiment we observed several characteristics that show an advantage of using the RF importance: overall
classification rate is higher, difference between sensitivity (rate of correctly classified AD examples) and speci-
ficity (rate of correctly classified NC examples) is lower and the OOB error rate remains low for a smaller
number of voxels.

The differences between fusioned importance map and the 2×2×2 importance map were insignificant. The
fusioned importance map yields a slightly superior classification rate.

In all our experiments the classification rate attains a maximum at ∼ 95.5%. We ascribe this limit to the use
of the mean intensity as feature. By calculating the mean of each patch the structural information contained in
each patch is lost. These high classification rates once more confirm the quality of the map we have extracted
from the data.
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7 Conclusion

The results of our experiments show that RF feature importance is a major indicator for clustering brain areas
in the classification of early stage AD. All extracted maps are fully consistent with medical findings. As a map
of zones of interest, it is localizing the classification relevant information more precisely than class-separation
distance and therefore performs better than the same in feature selection. We reduced the number of features
from 450000 to 2000 without suffering a loss in classification accuracy. This reduction of features will allow
us to apply features that are computationally costly in our future research.

Our rather simple classification approach achieved a high reduction of the number of features and outstanding
classification rates of up to 95.5%. We think our results contribute important information about the location
of AD related changes in the brain and can be a base for further, very localized, analysis of PET images with
computationally intensive image analysis and machine learning techniques.
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